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Abstract  

Econometric models, including Vector Autoregression (VAR), are widely used to quantify 

relationships among economic variables, predict outcomes, and analyze dynamic interactions 

over time to inform policy decisions. In this study, the objective was to understand the 

influence of rainfall and temperature in Nuwara Eliya on the fluctuations in prices of carrots. 

This study was designed to analyze the long-term impact of climatic factors on carrot price 

dynamics, offering insights into more informed agricultural and economic planning. 

Wholesale prices of carrot were collected from Hector Kobbekaduwa Agrarian Research and 

Training Institute (HARTI) covering twenty-three years (2000-2023). A VAR model was 

applied to capture the interdependencies between temperature, precipitation, and carrot 

prices, with an ideal lag order of 6. Granger causality tests revealed that precipitation 

changes significantly influenced carrot price fluctuations. VAR model coefficients further 

quantified the magnitude and significance of climate impacts on carrot prices. 

Keywords: Agricultural Price Volatility, Precipitation Patterns, Price Fluctuations 
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Introduction 

Vegetables are perishables that have a price variation according to supply and demand. 

In addition to supply and demand dynamics, several factors influenced vegetable prices, 

particularly in a country like Sri Lanka. Climate and weather variability are significant 

contributors, as they directly affect crop yield and availability (Zhang & Carter, 2018). 

Adverse climatic conditions such as droughts, heavy rains, or unseasonal temperature 

shifts led to reduced production, causing supply shortages and subsequent price increases 

(Tadesse et al., 2014; Funk & Brown, 2009). Hence vegetable prices directly impact 

residents' quality of life and farmers' income, which in turn influences the growth of Sri 

Lanka's vegetable sector and the country's overall economic balance. It is essential to 

forecast vegetable prices during both the harvesting season and the off-season for growers 

to make wise production decisions (Yoo, 2016). Forecasts of food commodity prices are 

essential for economic policy formulation, as agricultural price stability measures are 

crucial for ending the vicious cycle of poverty in developing countries (Illankoon & 

Kumara, 2020). Inadequate availability of agricultural commodities results in price 

fluctuations and places a burden on consumers, whereas excess of agricultural products 

leads to a decline in vegetable prices and causes financial setbacks for farming households 

(Xiong et al., 2018).  

Global climate change is expected to worsen in the coming decades, leading to more 

frequent and severe extreme climatic events with the potential to threaten agricultural 

production systems (Gordeev, 2022). A study conducted by Hatfield et al., (2011), 

explored the impacts of climate change in world food markets to find that rising 

temperatures can have a significant impact on crop production. The study highlighted that 

the yield variations due to temperature changes can vary significantly with regard to 

different crops in the tropics (Jat et al., 2016). On a certain timescale, there was a 

relationship between climate and agricultural futures markets. However, in extreme 

events, climate affects various agricultural commodities differently (Cao et al., 2016). 

However, studies of the impacts of climate change and climate variables on vegetable 

production, yield, and quality including preharvest and post-harvest vegetable quality 

have constituted the majority of research on climate factors and vegetables (Nalwanga & 

Belay, 2022). The effects of climate change on agriculture and crop production are 

complex and can vary significantly on various factors such as crop type, geographical 

location, and local climate conditions (Cao et al., 2016). Hence it is challenging for the 

government to create policies that adequately address the competing interests of farmers 

and consumers due to the imbalance in the supply and demand of agricultural products. 

Moreover, selecting a forecasting method to predict future prices will help policymakers 

and farmers make the right decisions (Sun et al., 2023).  

It expands the understanding of climate-related factors that can impact the agricultural 

market and specifically focuses on vegetable prices (Schlenker & Robert, 2009). This 

research also offers a theoretical framework that can guide future studies on the 
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development of early warning systems and forecasting models for vegetable prices. 

Furthermore, this study has practical implications for various stakeholders, including 

government policymakers, farmers, businesses, and consumers. Farmers can use this 

information to make informed decisions regarding crop planning and production. 

Additionally, consumers can benefit from a better understanding of climate fluctuations 

which influence vegetable prices, allowing them to make more informed purchasing 

decisions. The primary objectives of his study were to develop a VAR model based on 

rainfall and temperature which affects carrots and to identify the proportion of 

contribution of each climate factor in price fluctuations. Similarly, studying the price 

fluctuations influenced by climate variables in one specific crop offer insights into 

broader market dynamics in the vegetable sector which will be a foundation for analyzing 

prices concerning other crops in the future.  

Literature Review 

Fluctuation of vegetable prices plays a crucial role in shaping the economy and 

influencing consumers' everyday lives. This has led to a growing interest in conducting 

comprehensive and large-scale studies on vegetable pricing, as highlighted in various 

medical and societal research (Miller et al., 2016). These studies revealed that vegetable 

consumption remained low globally, especially in low-income regions, and emphasized 

the need for policies to improve the accessibility and affordability of these products (Li 

et al., 2021). Similarly, research have examined how pricing impacts food choices while 

exploring whether cost serves as a barrier to fruit and vegetable consumption among low-

income families by analyzing the average expense of a fruit and vegetable market basket 

(French, 2003). Researchers have studied vegetable prices by examining various 

influencing factors, with a focus on specific regions and varieties of vegetables. 

Numerous studies investigated the impact of petroleum prices on vegetable costs, along 

with the influence of petroleum prices (Du et al., 2022). These energy sources are critical 

for powering agricultural machinery, maintaining optimal growth conditions, especially 

in greenhouses, and transporting produce to markets and among other stakeholders. 

Time-series analysis was a common approach in many studies, offering critical insights 

into the dynamics of a system and enabling predictions of its behavior (Sun et al., 2023). 

These methods have been effectively applied across various fields, including physical, 

economic, and biological systems (Sun et al., 2023). Most traditional methodologies 

assume linear system behavior with stochastic noise, often overlooking nonlinear 

dynamic effects. The time series analysis method mainly included autoregressive moving 

average (ARMA), autoregressive integrated moving average (ARIMA), seasonal 

autoregressive integrated moving average (SARIMA), autoregressive conditional 

heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity 

(GARCH) (Sun et al., 2023).  

Clustering techniques, including hierarchical clustering, are also valuable for grouping 

items based on shared characteristics without predefined categories (Wang et al., 2021). 
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Combining clustering with other analytical methods resulted in a more comprehensive 

categorization that accounts for various dynamic aspects of the system. Notably, these 

methodologies did not require the time series to be stationary, which was a prerequisite 

for traditional techniques like autocorrelation analysis (Wang et al., 2021). The 

integration of clustering with other analytical methods frequently resulted in more 

comprehensive categorizations that capture various dynamic aspects of the system (Wang 

et al., 2021).  Importantly, these methodologies offered the advantage of not necessitating 

stationarity in the time series data, a key requirement for conventional approaches like 

autocorrelation analysis (Brown et al., 2017).  

Temperature and rainfall were identified as the primary climatic factors significantly 

influencing food production in Sri Lanka. Historical climate data revealed a consistent 

trend of both extreme and systematic warming over time (Ahmed & Suphachalasai, 

2014). Analysis of rainfall data spanning the past century revealed a decreasing trend in 

up-country regions situated at an elevation of 900 meters above sea level, while distinct 

patterns in dry zone rainfall were absent. Notably, comparable warming patterns were 

observed in the seasonal average temperatures during the crucial agricultural phases of 

the Yala season (April to September) and Maha season (October to March). Moreover, 

rainfall variability plays a critical role in crop production, as the timing of cropping 

seasons heavily depends on rainfall patterns (Zubair et al., 2015). Interestingly, there has 

been a recent increase in the inter-decadal variability of rainfall, contrasting with trends 

observed in earlier decades. According to regional climate model predictions, the 

temperature was projected to increase by 2°C to 3°C by the end of the twenty-first century 

and another projection, utilizing the General Circulation Model (GCM), suggests an 

expected temperature increase of 2.84°C by the conclusion of the twenty-first century 

(Zubair et al., 2015). In line with the Special Report on Emissions Scenarios, downscaled 

scenarios indicate that by the year 2080, temperatures are expected to rise by 

approximately 2.5°C to 4.5°C under the A2 scenario and approximately 2.5°C – 3.25°C 

under the B2 scenario. Additionally, a temperature increase of 1.1°C to 2.4°C and 1.5°C 

to 2.8°C for the two major crop seasons is projected to occur in 2025 (Jayawardhana & 

Warnakulasooriya, 2020). 

According to regional climate model predictions, temperatures in Sri Lanka are projected 

to rise by 2.9°C to 3.5°C compared to the baseline of 1986 to 2005 by the 2090s 

(Jayawardhana & Warnakulasooriya, 2020). However, under the least emission scenario, 

a warming of 0.8°C to 1.2°C is predicted for the same period. It is anticipated that 

minimum temperatures will increase more rapidly than average temperatures. The 

increase in extreme heat poses a significant threat to Sri Lanka, with a significant rise in 

the number of days experiencing temperatures of at least 35°C projected under different 

emission pathways. It is important to note that the projected increase in average 

temperatures in Sri Lanka is expected to be relatively lower than the global temperature 

rise. According to the CCKP model, the average temperature in Sri Lanka is estimated to 

increase by approximately 3.2°C by the 2090s (Jayasankar, et al., 2015).  
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The temperature rises patterns exhibited by the model ensemble show distinct seasonality, 

with temperatures expected to rise more rapidly between March and July compared to the 

period from August to February (Naumann et al., 2018). The long-term consequences of 

climate change have significant implications, particularly for agriculture and food 

security (Naumann et al., 2018). These implications were further compounded by two 

interrelated factors: population growth and shifting dietary preferences. It is projected 

that these factors will lead to a 60% surge in global food consumption by 2050 compared 

to the levels in 2006 (Naumann et al., 2018). The persistent impact of climate change on 

global food systems continued to be a pressing concern, as highlighted by the FAO in 

2006. 

In the context of Sri Lanka, the country is particularly vulnerable to the effects of climate 

change. Sri Lanka faces heightened exposure to climate change, increased sensitivity to 

its effects, and limited adaptability. The country exhibits an immense sensitivity to 

multiple aspects of climate change, including increasing temperatures, alterations in 

rainfall patterns, sea-level elevation, and intensification of severe extreme weather events. 

The primary investigation into the direct impact of weather on agricultural prices has been 

conducted through two main methods. The initial method involved employing time series 

methodologies on combined data sets of prices and weather metrics while the other 

method utilizes weather and price information through a panel approach (Dell et al., 

2014). When compared with time series methodologies; a panel approach utilizes weather 

and price information that is disaggregated temporally and spatially while taking into 

account localized weather anomalies that can impact local prices (Dell et al., 2014). This 

provides a more realistic representation of the causal effect that weather has on price 

formation, which could be obscured when using aggregated data (Blanc & Schlenker, 

2017). The panel approach was the ability to control for unobserved factors that correlate 

with weather using fixed effects. This helped reduce the threat of omitted variable bias 

(Blanc & Schlenker, 2017). However, time series methodologies were utilized for future 

price projections.  

Time series forecasting methods typically operate under the assumption that future 

patterns of change will mirror historical trends. However, in practical applications, 

external factors frequently disrupt these patterns, resulting in biased and inaccurate 

forecasts (Sun et al., 2023). Variables such as climate change, policy shifts, and 

unexpected events introduced structural changes to the time series, thereby diminishing 

the reliability of historical data as a predictor of future behavior (Sun et al., 2023). This 

highlighted the need for adaptive forecasting techniques capable of accounting for such 

dynamic influences. However, from a broader perspective, such studies focused on 

understanding price dynamics and making predictions played a pivotal role in managing 

central markets and formulating policies related to vegetable prices and consumption. 

Recognizing shared dynamic behaviors among commonly consumed vegetables was 

essential for identifying product groupings and understanding how external factors, such 

as greenhouse usage, influence price fluctuations (Wang et al., 2021).  This information 
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helped in market decisions, price correlation studies, and classifications based on 

cultivation methods and product usage patterns. However, there was a research gap in the 

grouping of vegetables based on their dynamic price behavior or exploring the 

relationship between these dynamics and factors such as cultivation methods such as 

field-grown, greenhouse, or combined (Karakasidou et al., 2024).  

Research on price dynamics and forecasting plays a pivotal role in central market 

management and the development of governmental or private policies regarding 

vegetable prices and consumption (Du et al., 2022). Identifying common patterns in the 

dynamic behavior of frequently consumed vegetables was particularly important. This 

helped classify products for better market decisions, pricing strategies, or planning based 

on factors like cultivation methods, such as greenhouse and open-air farming (Du et al., 

2022). These approaches provided a framework for studying individual product price 

dynamics and their interrelations. Traditional methods for agricultural price forecasting, 

including regression analysis, time series models, and gray forecasting techniques, are 

generally effective when variables are independent, data follow a normal distribution, and 

the relationships are linear or mildly nonlinear (Karakasidou et al., 2024). However, in 

practical scenarios, agricultural price forecasting frequently deviates from these ideal 

conditions, posing challenges such as high dimensionality, limited sample sizes, and 

pronounced nonlinearity. 

Theoretical Framework 

This study followed an experimental procedure outlined in Figure 1, which consisted of 

data processing, construction of a VAR model, variance decomposition analyses, and 

impulse response analyses. The first step involved subjecting the time series data of carrot 

price and climate factors to first-order differencing to capture the volatility of the 

variables. The data were then tested for unit root to ensure the stationarity of the time 

series. Once the stationarity was confirmed, a VAR model was constructed using the 

carrot price and climate factors. The optimal lag order for the model was determined 

based on the Akaike information criterion (AIC) and the final prediction error (FPE) 

criterion. The lag structure that generated the minimum AIC or SIC was selected as the 

optimal lag structure. The AIC was a measure that balances the model's predictive 

performance with the number of parameters it required. The FPE assessed the quality of 

the model by considering the prediction error and the number of samples. 

By selecting the lag order that minimized these criteria, the VAR model was constructed 

and used for further analysis. The Granger causality test of the carrot price and climate 

factors was conducted using the optimal lag order. The VAR model was then 

reconstructed using selected climate variables and prices, repeating this process until a 

stable lag order was achieved.  
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In the Sri Lankan scenario: some recent studies have demonstrated the effectiveness of 

VAR models in understanding the dynamic interactions among economic variables in Sri 

Lanka, providing valuable insights for policymakers and researchers. Kaluarachchi & 

Jayathilaka (2024), applied a VAR model to examine how GDP per capita income, 

unemployment, higher education, and economic growth influence migration in Sri Lanka. 

Some studies explored the impact of fuel costs on the prices of food items, including 

Samba rice and coconut, in Sri Lanka. While using Granger causality and cointegration 

tests, the research found that changes in petroleum prices significantly affect food prices, 

highlighting the interconnection between energy costs and agricultural commodity prices 

(Samarasinghe et al., 2024). Perera & Jayawickrama (2023), empirically investigated the 

effects of monetary policy shocks on the Sri Lankan economy, focusing on the strength 

of credit and exchange rate channels and it employed a VAR model. Another recent 

research examined the impact of government expenditure and tax revenue shocks on real 

GDP, inflation, and real interest rates in Sri Lanka. That study applied a VAR 

methodology and found that fiscal shocks have a moderate impact on macroeconomic 

variables, with fiscal multipliers being moderate in size (Rajakaruna , 2022). 

 

Test for stationarity 

If Yt ∼ I (0), can fit the model for Yt 

If not obtain the stationary series by 

applying differencing 

Choose the suitable lag length 

Fit the model 

 
Test for uncorrelated errors 

Each series should have the same order of integration 

Augmented Dickey-

Fuller (ADF) t-

statistic test for unit 

root 

 

Kwiatkowski-Phillips-

Schmidt-Shin (KPSS) 

for level or trend 

stationarity 

Figure 1: Framework to estimate a VAR model  
Source: Authors 
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Methodology 

The VAR model combines multiple factors into a cohesive framework and allows for the 

visualization of the impact of these factors through variance decomposition. By utilizing 

the variance decomposition function of the VAR model, the contribution ratio of each 

climate element's variation to the fluctuations in carrot price can be derived. The VAR 

model assumed that the calculated coefficients and the variance of the disturbance factors 

remain constant over time. When the associated time series were not cointegrated, VAR 

models can be used to forecast a stationary time series based on both its historical 

realizations and the realizations of other stationary series. However, over time, various 

external factors, such as economic crises, laws and regulations, and technological 

advancements, can lead to significant changes and sudden shocks. In such cases, the 

conventional VAR model becomes inadequate for capturing shifting model parameters. 

Hence to address this issue, the time-varying parameter vector autoregressive (TVP-

VAR) model was a useful approach (Primiceri, 2005). Figure 2 shows the experimental 

design of the current study (Affoh et al., 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Climate Data Nuwara Eliya 
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Carrots Nuwara Eliya 

First order differencing 
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Fit a VAR model 

Optimal lag order 

selection 
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Model stability Test 

Variance decomposition 

Figure 2: Experimental flowchart  
Source: Authors 
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In this study carrot wholesale price data were collected from Hector Kobbekaduwa 

Agrarian Research and Training Institute (HARTI) based across 23 years (2000-2023). 

The climate data for maximum temperature (degrees Celsius), minimum temperature 

(degrees Celsius), and rainfall (mm) of Nuwara Eliya was collected from the Meteorology 

Department from 2000 to 2023. Data volatility of the monthly data was first-order 

differenced. This allowed all the time series to pass the unit root test and satisfy the 

ensuing modeling requirements. Each time series has 852 values following the first-order 

difference processing. Data were analyzed using statistical software EViews (Version 13) 

and R-studio (Version 3).   

Results and Discussion 

Handling missing data and seasonal tests was a prominent aspect of time series analysis. 

Due to issues of data collection errors, holidays, or operational challenges, certain days 

may not have been recorded. Therefore, interpolation methods were used to estimate these 

missing values by filling in the gaps, ensuring that the time series remains continuous, 

and creating a more uniform dataset for analysis. When handling Outliers, some data 

points might have been excluded as being identified as extreme outlier values. 

Interpolation ensured a continuous series by estimating reasonable values for these 

removed points, thus maintaining data integrity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (B)
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Figure 3 (A) Time series plot of monthly carrot wholesale price in Nuwara Eliya 

from 2020 to 2023; (B) Time series plot of monthly average temperature from 

2020 to 2023; (C) Time series plot of monthly rainfall in Nuwara Eliya from 2020 

to 2023 
Source: Authors 
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According to Figure 3, it was evident that carrot price data, average temperature data, and 

rainfall data were not stationary. Hence first difference was taken in every variable and 

made those variables stationary. However, to address this issue and ensure the validity of 

subsequent analyses, the first difference of each variable was calculated. By applying this 

transformation, the non-stationary variables were converted into stationary series, 

allowing for more accurate modeling and forecasting. This step was essential to eliminate 

potential biases and to facilitate the application of time series techniques that assume 

stationarity in the data. 

Table 1: Descriptive statistics of the carrot prices 

Source: HARTI, Data Bank 

Table 2: Descriptive statistics of the climate factors 

Source: Department of Meteorology 

Granger Causality Analysis 

The stationarity of the climate factors and carrot price data was tested using the 

Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests; the test results are shown 

in Table 3. The presence of unit roots was ruled out as the null hypothesis, and all data 

cleared the 1% significance level. This indicated that all of the data were non-stationary, 

and the first differenced data could be utilized to build VAR models and perform further 

Granger causality tests. This transformation ensured that the variables met the 

prerequisites for VAR modeling and Granger causality analysis, allowing for a strong 

examination of interrelationships. This transformation was essential to satisfy the 

stationarity assumptions required for VAR modeling and Granger causality analysis, 

enabling a robust investigation of the dynamic interrelationships among the variables. 

Description Carrot Prices 

Mean  232.30 

Median  245 

Maximum  465 

Minimum  72.50 

Standard Deviation (Std. Dev.) 102.71 

Coefficient of variation (CV) 1.51 

Observations 852 

Description Average 

Temperature (0C) 

Precipitation 

(mm) 

Mean  16.4 5.4 

Median  16.6 10.6 

Maximum  19.9 81.3 

Minimum  11.65 22.5 

Standard Deviation (Std. Dev.) 1.2 10.5 

Coefficient of variation (CV) 1.34 10.3 

Observations 852 852 
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Table 3: Stationary test 

Secondary 

Variables 

ADF PP 
 

 Intercept Trend and 

Intercept 

None Intercept Trend and 

Intercept 

None 
Conclusion 

Carrot 0.1167 0.3169 0.4721 0.1572 0.3915 0.5073 
Non- 

Stationary 

AT 0.0000 0.0000 0.5698 0.0000 0.0000 0.5774 
Non- 

Stationary 

PR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Non- 

Stationary 

*** indicate the statistical significance at the 1% levels, respectively  

* Average temperature (AT) and precipitation (PR) 

The lag selection criteria were the Akaike information criterion (AIC), Schwarz Criterion 

(SIC), and Sequential modified LR test (LR) whereas the AIC and SIC criterion used to 

select the lag order. Accordingly, for this symmetric lag model, the AIC-based criteria 

picked the correct lag more frequently than the other criteria. According to the different 

error criteria, different VARs were fitted. According to AIC and SIC, a sixth lag can be 

selected. Table 4 displays the findings of Granger causality tests conducted between the 

variables in each unit of analysis and the related optimum lag ordering. The climate factor 

variables that passed the unidirectional Granger causality test were average temperature 

(AT) and precipitation (PR). The ideal lag order of the carrot analysis was 6. 

Table 4: Granger causality test 

Analysis  

Units  

The Null Hypothesis  Lag  P-Value  Conclusion  

Carrot AVG_TEM does not Granger 

Cause carrot price 

Lag 6 0.0570  Accepted 

PR does not Granger Cause carrot Lag 6 0.0447** Reject 

*** indicate the statistical significance at the 1% and 5% levels, respectively 

Granger causality test, results concluded that the carrot price fluctuations were affected 

by precipitation changes and also average temperature did not significantly predict carrot 

prices (p-value = 0.0570), hence accepting the null hypothesis. This suggested that 

temperature changes have limited predictive value for carrot prices in this model. 

However, precipitation significantly predicted carrot prices (p-value = 0.0447), hence 

rejecting the null hypothesis in this case. Therefore, precipitation appeared to have a 

meaningful effect on carrot prices, unlike temperature. 
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Impulse Response Analysis 

After conducting model estimation and parameter testing, two types of impulse response 

analysis were used to examine the dynamic effects of climate changes on vegetable price 

fluctuations. The first type, equal-interval impulse response analysis, aimed to investigate 

the response trend of the dependent variable to a one-unit standard deviation positive 

change in the independent variable at fixed time intervals throughout the time series 

horizon. The second type, time point impulse response analysis, focused on exploring the 

short-term, mid-term, and long-term response changes of the dependent variable to the 

independent variable by selecting three intervals of different lengths. 

In the equal-interval impulse response analysis, the response of vegetable prices to a one-

unit standard deviation increase in climate factors of temperature and precipitation was 

examined at fixed time intervals. This analysis showed a clear response trend where prices 

initially reacted negatively to changes in the climate variable diminishing over time. In 

the equal-interval impulse response analysis, a one-unit standard deviation increases in 

precipitation resulted in an immediate increase of 2.8% in carrot prices. This positive 

impact peaked at 1.2% in the third time interval, then gradually declined, stabilizing 

around 0.6% after eight intervals. This indicated that the initial effect of precipitation on 

prices was strong but diminished over time as the market adjusted. 

In the time point impulse response analysis, vegetable prices demonstrated distinct 

reactions in the short-term, mid-term, and long-term. Short-term responses were more 

immediate but tended to stabilize, while mid-term and long-term responses revealed 

prolonged adjustments, suggesting that climate fluctuations can have lasting effects on 

market prices. In the short term (within the first two intervals), a one-unit increase in 

temperature caused a 0.7% drop in carrot prices, indicating a negative immediate 

response. By the mid-term (intervals three to six), the effect became neutral, with prices 

returning close to the baseline. In the long term (beyond six intervals), the response 

reversed slightly, showing a gradual increase of 0.4%, suggesting that market forces 

eventually accommodate initial climate impacts.  

VAR stability condition and residual diagnosis 

The stability condition of a VAR model refers to the requirement that the model's 

dynamics remain well-behaved over time. Residual diagnosis was an essential step in 

VAR modeling to assess the quality of the model's fit and the presence of any remaining 

patterns or issues in the residuals. Various diagnostic tests were performed to evaluate the 

residuals, from the assessment of residual autocorrelation (Figure 4). According to Figure 

4, most of the autocorrelations were within two standard error bounds.  
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Figure 4: Autocorrelations with Approximate 2 Std. Err. Bounds 

The VAR model's stability condition test confirmed that all characteristic roots lie within 

the unit circle, with the largest root at 0.92, indicating model stability and suitability for 

long-term analysis. This stability meant that any shocks in the variables gradually scatter 

rather than cause persistent fluctuations. For residual diagnostics, the autocorrelation test 

showed p-values above 0.10 for all lags, confirming that there is no significant 

autocorrelation, suggesting that the model captured the temporal dependencies 

effectively. The heteroscedasticity test resulted in a p-value of 0.15, indicating 

homoscedasticity, or constant variance, across residuals. These findings validated the 

model’s reliability, showing it was well-specified and appropriate for analyzing dynamic 

relationships over time. Considering System Residual Portmanteau Tests for carrots, at 

Lag 6, the p-value was 0.9749, indicating that there was no significant autocorrelation. 

Hence, it concluded that there were no autocorrelations in the residuals of the returns. As 

autocorrelation was not detected, it suggested that the model adequately captured the 

temporal dependencies present in the data. Then the following models were derived. 

Equation General:  Yt (1) = α10 +α11Yt−1 (1) +α12Yt−1
(2) + α13Yt−1

(3) +β11Yt−2
(1) + β12Yt−2 (2) 

+β13Yt−2
(3) +ϵ1t 

Where Yt (1) – VAR1 Equation, Yt−1 – variables and α / β – Constants 

Specific Model for Carrot Price Dynamics: 

D (Carrot Price) = C(1). D (Carrot Price t-1) + C(2).Temperature t-1 + C(3).Rainfall t-1+ 

C(4) 

Specific coefficient values were: C(1)= 0.141777; C(2)= 0.000060 ; C(3)= -16.09719; C(4)= 0.214183; 
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The weights of each factor in the differenced carrot price equation were determined by 

the respective coefficients: the weight of the lagged differenced carrot price (D (Carrot 

Price t-1)) was given by the coefficient C(1), which is 0. 141777. The weight of the lagged 

fuel price (Temperature t-1) was given by the coefficient C(2), which is 0.000060. The 

weight of the lagged rainfall (Rainfall t-1) was given by the coefficient C (3), which is -

16.09719. The constant term C(4) represented an additional weight in the equation, which 

is 0.214183. These weights determined the impact of each lagged variable and the 

constant term on the current differenced carrot price in the VAR model. The interpretation 

of the VAR model involved understanding the lag structure and the effects of lagged 

variables on the differenced carrot price. The coefficients provided information about the 

magnitude and direction of the relationships between the variables, and the weights 

indicated the relative impact of each factor on the current differenced carrot price. 

In the equation for the differenced carrot price, the lagged differenced carrot price showed 

a positive effect with a coefficient of 0.141777, indicating that past changes in carrot 

prices positively influence current changes. The lagged temperature showed a negligible 

impact (0.000060), while the lagged rainfall had a significant negative effect (-16.09719), 

suggesting that increased rainfall substantially lowers current carrot prices. 

Conclusion  

The VAR model revealed important insights into the factors influencing carrot price 

fluctuations. The stability and residual diagnostic tests confirmed that the model was 

well-specified, stable, and free from significant autocorrelation, indicating its reliability 

for analyzing the impact of climate variables on carrot prices. The Granger causality tests 

showed that precipitation significantly predicts carrot price changes, while temperature 

did not, highlighting rainfall as a key driver of price variability. The impulse response 

analysis further supported this, as a positive rainfall shock led to an initial increase in 

carrot prices, which gradually stabilized over time, whereas temperature had minimal 

impact in the short term but slightly influenced prices in the long term. The VAR model 

coefficients indicated that past changes in carrot prices have a positive effect on current 

prices, while rainfall had a substantial negative effect on price changes, suggesting that 

increased rainfall can significantly lower current carrot prices. These results revealed the 

critical impact of precipitation in influencing carrot prices and suggested that strategies 

for agricultural planning and market prediction should focus on rainfall patterns. 

Based on the aforementioned analysis, it is important to restate that the findings of this 

study are applicable within specific spatial and temporal contexts. Generalizing the 

conclusions drawn from this study requires further verification and examination across 

different vegetable varieties, conditions, and settings. 
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