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Abstract 

Urban Heat Island (UHI) is an increasingly prevalent phenomenon in rapidly urbanizing areas, 

resulting from the conversion of natural landscapes into impervious built-up surfaces, which 

absorb and retain more solar radiation than vegetated or natural environments. This study 

assesses the spatio-temporal dynamics of UHI within the Matara Municipal Council (MMC) 

area in Sri Lanka by analyzing changes in Land Surface Temperature (LST) between 2016 

and 2024. Employing Landsat 8 satellite imagery, key indices such as LST, Normalized 

Difference Vegetation Index (NDVI), and Normalized Difference Built-up Index (NDBI) 

were derived following rigorous image pre-processing procedures. UHI intensity was 

quantified by calculating the temperature differential between urban and surrounding rural 

areas. The results indicate a marked increase in LST over the period, with the maximum LST 

rising by 3.69°C and the mean LST by 2.51°C, largely attributable to urban expansion and 

concomitant vegetation loss. Spatial analysis revealed that densely built-up zones exhibit 

elevated surface temperatures, whereas areas with higher vegetation density show 

significantly lower LST values, underscoring the mitigating influence of green cover. 

Correlation analyses confirmed a moderate negative association between LST and NDVI and 

a strong positive correlation between LST and NDBI, reinforcing the role of urban 

infrastructure in exacerbating surface heating. These findings emphasise the critical impact of 

urbanization on UHI intensification, which poses significant environmental and public health 

challenges, including increased energy demands for cooling and heightened pressure on water 

resources. The study advocates for the incorporation of green infrastructure and sustainable 

urban planning measures to alleviate UHI effects. Mapping the spatial distribution of UHI 

provides essential insights for policy interventions aimed at fostering resilient and climate-

adaptive urban environments in Matara. 

Keywords: Urban Heat Island, Land Surface Temperature, Preprocessing, Landscapes, 

Sustainable   

1. Introduction 

Temperature has been increasing in many parts of the world due to natural 

and anthropogenic activities. Urban Heat Island (UHI) is a crucial aspect of 

urban areas. Increasing Land Surface Temperature (LST) leads to the 

formation of an UHI in urban centres. Sri Lanka is a developing country with  
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a rapid urbanization process, which has gradually led to UHI in recent 

decades.  However, LST frequently changes depending upon climatic 

conditions and other human activities, which makes its exact prediction a 

challenge. Urbanization contributes to increased greenhouse gas (GHG) 

emissions and alters natural landscapes, leading to significant climatic impacts 

at all scales. The transformation of land cover and the use of heat-retaining 

urban materials result in the re-emission of absorbed heat as long wave 

radiation at night, raising urban temperatures above those of surrounding rural 

areas (Thambawita et al., 2023; Zahir et al., 2024). In the 21st century, people 

faced one of the critical issues in UHI's aftermath due to urbanization and 

industrialization. Generally, built-up areas and LST are important phenomena 

in global climate change (Rajeshwari & Mani, 2014; Nuskiya et al., 2023). Air 

temperature in urban areas is significantly influenced by factors such as 

building geometry, the thermal and radiative properties of construction 

materials, and heat released from human activities like domestic heating, 

traffic, and industrial processes (Morales-Inzunza et al., 2023). This 

phenomenon, known as the UHI effect, describes the tendency of cities to be 

warmer than surrounding rural regions due to these anthropogenic influences.  

In tropical cities, cloud contamination is a frequent issue in optical satellite 

data, such as the Landsat series, making long-term observation and analysis 

more challenging. With rapid population growth driving extensive 

urbanization in many tropical and subtropical regions, numerous 

administrative and planning challenges have emerged (Tombari, 2019). These 

challenges underscore the need for timely and accurate monitoring of large-

scale urban development using satellite remote sensing technologies. Sri 

Lanka is undergoing rapid urbanization, with projections indicating that 60% 

of the population will be living in urban areas by 2030 (Pathiranage et al., 

2018). The Colombo Metropolitan Area, a fast-growing urban center in South 

Asia, has been the focus of studies analysing spatial and temporal changes in 

LST (Ranagalage et al., 2017). In line with the global trend of rising 

temperatures, the country has experienced a significant increase in average 

annual surface temperatures over the past century (Sanjeewani & Manawadu, 

2016; Hansen et al., 2010). However, the expansion of built-up areas and the 

removal of vegetation cover contributed to an increase in LST, leading to a 

rise in the UHI effect in urban areas (Tombari, 2019; Zahir et al., 2024). Urban 

vegetation and greenery play a vital role in mitigating the UHI effect (Zahir et 

al., 2024). Researchers have utilised Google Earth Engine (GEE) to analyze 

vegetation conditions, soil moisture, and temperature-related climate change 

effects (Nuskiya et al., 2024). Geospatial analysis and vegetation indices are 

essential tools for promoting urban sustainability and resilience (Zahir et al., 

2024). The study also noted that the urban area is more vulnerable to increased 
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urban heat due to reduced vegetation cover, while the village showed the least 

temperature variation (Jumari et al., 2023).  

Understanding the microclimate of urban areas relies heavily on satellite-

based geoinformatics techniques, which also play a crucial role in analyzing 

the effects of the UHI. Advancements in thermal remote sensing technology 

have significantly enhanced the study of UHI (Dousset et al., 2003; Li et al., 

2012; Ranagalage et al., 2017). It highlights a significant temperature contrast 

between urban and rural areas, with urban regions exhibiting the highest 

temperatures. Advancements in satellite technology have enabled the 

acquisition of continuous surface data, offering greater coverage than 

traditional point-based observations for LST analysis. Tsou et al. (2017) 

conducted a study assessing the UHI effect using Landsat 8 imagery. The 

researchers applied various techniques to estimate LST, identifying the most 

effective algorithm for LST retrieval. Furthermore, the calculation of LST has 

been facilitated by digital image processing tools and satellite imagery. A 

study by Rajeshwari and Mani (2014), Landsat 8 OLI/TIRS data and the Split-

Window (SW) technique to derive LST. The SW method incorporated 

Operational Land Imager (OLI) bands 2, 3, 4, and 5, along with the spectral 

radiance and emissivity of two Thermal Infrared (TIR) bands. It indicated 

lower LST in hilly regions due to dense vegetation cover and higher LST in 

arid zones. Furthermore, Landsat 8 OLI/TIRS data, when used in conjunction 

with the SW technique, enables LST analysis by incorporating Land Surface 

Emissivity (LSE) derived from the OLI and NIR bands and Brightness 

Temperature (BT) values from both thermal bands (Singh, 2017).  

In addition, the study by Florim et al. (2021) investigates the UHI 

phenomenon by examining the relationships between LST, the Normalized 

Difference Vegetation Index (NDVI), and the Normalized Difference Built-

up Index (NDBI). It offers valuable insights into the development and 

intensification of UHI, highlighting that vegetation cover mitigates heat 

accumulation, whereas built-up areas and exposed surfaces significantly 

contribute to it. The study also underscores that the presence of vegetation and 

water bodies was found to lower LST by creating cooler microclimates. 

However, identifying spatial patterns of UHI is essential for informing urban 

planning and implementing strategies to reduce adverse thermal impacts. 

Urban planners and decision-makers are therefore encouraged to use spatial 

data for effective heat mitigation (Florim et al., 2021). 

The UHI effect is becoming increasingly prominent in underdeveloped 

and developing urban regions due to rapid population growth and unplanned 

urbanization. Thapa (2021) reported a notable increase in UHI intensity, 

underscoring the urgent need for public awareness, strategic planning, and 
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intervention to address UHI in growing cities. Similarly, Malik et al. (2019) 

analyzed the interrelationships between LST, NDVI, and NDBI using Landsat 

8 imagery for a watershed region. LST was retrieved from thermal bands to 

examine spatial and seasonal temperature variations. The study revealed that 

maximum temperatures occurred in urbanized or built-up areas, emphasising 

their heat-retaining characteristics. Understanding the interplay among LST, 

NDVI, and NDBI is critical for assessing climate change impacts on 

ecosystems and predicting vegetation health in watersheds. LST serves as a 

key parameter in climate studies, urban land-use planning, and thermal 

balance analysis. Anandababu et al. (2018) employed NDVI, derived from red 

and NIR bands, to evaluate vegetation dynamics. Their analysis indicated that 

areas with high NDVI values corresponded with lower LSTs, reinforcing the 

cooling effect of vegetation. Furthermore, Guha et al. (2018) explored the 

relationship between LST, NDVI, and NDBI by applying threshold values to 

distinguish land use types. It also highlights that built-up and bare land areas 

are directly associated with elevated LSTs, illustrating how urbanization 

influences surface thermal properties and land surface processes. 

The primary cause of surface UHI formation is the reduction of vegetation 

due to poorly planned urban expansion, where green areas are replaced by 

impervious surfaces such as buildings, roads, and pavements. Rapid 

urbanization intensifies surface UHI effects.  At this level, several factors 

contribute to the formation of the UHI effect in urban areas, including land use 

changes, reduced vegetation, and heat emitted from buildings and 

infrastructure that absorb and subsequently release heat into the environment. 

However, overheating is a concerning phenomenon that poses serious health 

risks, particularly for children, women, and the elderly.  Therefore, this study 

aims to assess the UHI phenomenon between 2016 and 2024 and identify areas 

with elevated LST which are crucial for urban planners and policymakers in 

implementing heat reduction strategies. Promoting green cities can serve as an 

effective approach to mitigate heat-related impacts. Recognising the spatial 

patterns of surface UHI through mapping enables urban planning policies to 

address the adverse effects more effectively.  

2. Materials and methods 

2.1 Study Area  

The study area, located in the Matara Municipal Council (MMC) in the 

Southern Province of Sri Lanka, is one of the country’s prominent coastal 

cities. Geographically, it lies along the southern coastline between 5° 55' 54'' 

– 5° 59'44 '' latitude and 80° 30' 05'' – 80° 37' 44'' longitude, covering a total 

land area of approximately 1,283 km² (Figure 1). MMC experience a tropical 
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rainforest climate due to its proximity to the equator, characterised by 

consistently high temperatures and rainfall throughout the year. The average 

annual temperature is 26.8°C, and the area receives about 2,147 mm of annual 

precipitation. Monthly temperature fluctuations range from an average 

minimum of 23°C to a maximum of 31.1°C. Rainfall is recorded throughout 

the year, with monthly averages ranging between 22 mm and 66 mm.   

According to Sri Lanka’s 2012 national census, the population within the 

study area increased by 40%, leading to the incorporation of 46 surrounding 

villages into the administrative boundaries. MMC was officially designated a 

municipality by the Urban Development Authority (UDA) in 2002. As a major 

commercial center on Sri Lanka’s southern coast, the study area plays a 

significant role in driving regional development in the Southern Province 

(Pathiranage et al., 2018).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Location of Study Area 

2.2 Materials 

The primary data source for this study comprises satellite imagery 

obtained from the Landsat 8 OLI/TIRS data. These images were downloaded 

from the United States Geological Survey (USGS) Earth Explorer platform 

(https://earthexplorer.usgs.gov/), a widely recognized and reliable resource for 
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remote sensing data, particularly in climate and environmental studies. The 

analysis focuses on two key dates: November 10, 2016, and January 17, 2024. 

The selected imagery maintains consistent path and row identifiers, enabling 

accurate temporal comparisons (Table 1). The cloud cover for the images was 

1.51% and 4.10%, respectively, ensuring minimal atmospheric interference 

and high-quality data for analysis. This longitudinal dataset supports the 

evaluation of how urban expansion within the MMC area has influenced 

changes in LST over time.  

Table 1: Source of Landsat 8 OLI/TIRS Data 

Acquisition Date Path/Row Satellite/Sensor  Cloud Cover 

2016.11.10 141/056 Landsat 8 OLI/TIRS 1.51 

2024.01.17 141/056 Landsat 8 OLI/TIRS 4.10 

 

The Landsat 8 sensor is equipped with multiple spectral bands, each 

designed for specific applications in remote sensing. Table 2 provides detailed 

information on these bands, including their descriptions, wavelength ranges, 

and spatial resolutions. This information is essential for analysing various land 

surface characteristics and vegetation properties, enabling more accurate 

environmental and climate assessments.  

Table 2: Specification of the Bands of Landsat 8 OLI/TIRS 

Band Name Wavelength Resolution  

Band 1 Coastal Aerosol  0.43 - 0.45 µm 30 m 

Band 2 Blue 0.45 - 0.51 µm 30 m 

Band 3 Green 0.53 - 0.59 µm 30 m 

Band 4 Red 0.64 - 0.67 µm 30 m 

Band 5 Near-Infrared  0.85 - 0.88 µm 30 m 

Band 6 SWIR 1 1.57 - 1.65 µm 30 m 

Band 7 SWIR 2 2.11 - 2.29 µm 30 m 

Band 8 Panchromatic (PAN) 0.50 - 0.68 µm 10 m 

Band 9 Cirrus 1.36 - 1.38 µm 30 m 

Source: https://www.usgs.gov/landsat-missions/landsat-8  

2.3 Data Analysis 

The initial step in the data analysis process involved image pre-processing 

to enhance the quality of the satellite imagery and enabling the extraction of 

meaningful features. This included geometric correction to ensure accurate 

spatial alignment, atmospheric correction to eliminate atmospheric distortions, 

and the conversion of thermal band data to surface reflectance. The pre-

https://www.usgs.gov/centers/eros/science/landsat-collection-2-data-dictionary#cloud_cover_land
https://www.usgs.gov/landsat-missions/landsat-8
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processed images were then analysed using ArcGIS software, which 

facilitated the integration and visualisation of the spatial data layer.  

After the pre-processing of satellite images, key indices were calculated to 

evaluate urban heat dynamics. LST was evaluated using a proposed approach 

designed to process Landsat 8 imagery. These products were first 

geometrically corrected, and the initial step of the methodology involved 

converting the Digital Number (DN) values of Band 10 to Top of Atmosphere 

(TOA) spectral radiance at the sensor level using Eq. 1 (Teixeira Pinto et al., 

2020). 

L𝜆 =
(L𝑚𝑎𝑥−L𝑚𝑖𝑛)∗Qcal

(𝑄𝑐𝑎𝑙𝑚𝑎𝑥−𝑄𝑐𝑎𝑙𝑚𝑖𝑛)
+ L𝑚𝑖𝑛 − O𝑖      (Eq. 1)                    

where, Lmax - the maximum radiance (Wm-2sr-1μm-1); Lmin - the 

minimum radiance (Wm-2sr-1μm-1); Qcal - the DN value of pixel; Qcalmax 

- the maximum DN value of pixels; Qcalmin - the minimum DN value of 

pixels; Oi - the correction value for band 10.   

After converting the DN values to at-sensor spectral radiance, the TIRS 

band data were further converted into BT using the thermal constants provided 

in the metadata file and Eq. 2 (Masiello et al., 2013): 

BT =
𝐾2

𝐼𝑛(
𝐾1

𝐿𝜆
)+1

− 273.15                                             (Eq. 2) 

where, BT - TOA brightness temperature (°C); Lλ - TOA spectral radiance 

(Watts/(m2 * sr * μm)); K1 - Constant Band (No.); K2 - Constant Band (No.). 

The K1 and K2 constants are obtained from the thermal coefficients of 

TIRS band 10, as specified in the metadata file associated with the satellite 

image. To express the resulting temperatures in degrees Celsius, a correction 

is applied by subtracting absolute zero, approximately equal to -273.15°C. 

Given that the study area has relatively dry atmospheric conditions with 

minimal variation in water vapour content, atmospheric effects were not 

considered in the retrieval of LST. 

However, the calculation of the NDVI (Eq. 3) is essential for deriving 

Proportional Vegetation (Pv) (Eq. 4) and LSE (ε) (Neinavaz et al., 2020; Zahir 

et al., 2024). 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                                                                   (Eq. 3) 
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where, Red – Band 4; NIR – Band 5   

𝑣 = (
NDVI−NDVI𝑚𝑖𝑛

NDVI𝑚𝑎𝑥−NDVI𝑚𝑖𝑛
)

2

                                                                        (Eq. 4) 

where, Pv - Proportion of Vegetation; NDVI - DN values from NDVI 

Image; NDVImin  -Minimum DN values from NDVI Image; NDVImax - 

Maximum DN values from NDVI Image. 

The calculation of LSE is essential for accurately estimating LST, as LSE 

serves as a proportionality factor that adjusts blackbody radiance to account 

for the actual emitted radiance (Eq. 5). It represents the surface’s ability to 

transmit thermal energy into the atmosphere (Kruse et al., 1993). At the pixel 

level, natural surfaces exhibit heterogeneity in LSE due to variations in surface 

characteristics. LSE is highly influenced by factors such as surface roughness 

and the type and density of vegetation cover (Barsi et al., 2014). It is typically 

derived from NDVI values as the average emissivity of specific surface 

elements. 

E = 0.004 * PV + 0.986                                 (Eq. 5) 

where, E - LSE; Pv - Proportion of Vegetation 

Finally, the Estimated Surface Temperature (EST), also referred to as LST, 

was calculated as the radiative temperature using the TOA brightness 

temperature, the wavelength of emitted radiance, and LSE, as outlined in Eq. 

6 (Kumar et al., 2022). In remote sensing and geospatial studies, EST is 

commonly used interchangeably with LST and represents the temperature of 

the Earth's surface derived from satellite-based TIR data. 

𝐿𝑆𝑇 =
𝐵𝑇

1+ (
𝜆.𝐵𝑇

𝜌
)𝐼𝑛(ε)

 -273.15              (Eq. 6) 

Where, λ - wavelength of emitted radiance (~10.895 µm for Landsat 8 

Band 10); ρ -1.438×10−2 m; Subtract 273.15 to convert from Kelvin to 

Celsius. 

Ultimately, the UHI effect refers to the phenomenon in which urban areas 

experience higher temperatures than surrounding rural regions, primarily due 

to human activities and modifications to the natural environment. To quantify 

this effect, the most widely used approach involves calculating the difference 

in LST between urban and rural areas (Eq. 8). This temperature differential 

serves as an indicator of UHI intensity. 
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UHI = LST𝑢𝑟𝑏𝑎𝑛 − LST𝑟𝑢𝑟𝑎𝑙                                                           (Eq.  7)  

where, LSTurban - Average LST in urban/built-up areas; LSTrural - 

Average LST in surrounding rural/natural areas 

The NDBI is a remote sensing index commonly used to identify and map 

built-up areas in satellite imagery. It is particularly valuable in urban studies 

for assessing the extent of impervious surfaces, such as buildings, roads, and 

other man-made structures (Slonecker et al., 2001). NDBI plays a significant 

role in identifying urban areas, analysing their correlation with LST, mapping 

UHI zones, and supporting urban planning strategies. The index is calculated 

using Eq. 8.  

NDBI =
(SWIR−NIR)

(SWIR+NIR)
                                                                                (Eq. 8) 

where, SWIR - Short-Wave Infrared band (e.g., Band 6 for Landsat 8); 

NIR band (e.g., Band 5 for Landsat 8) 

3. Results & Discussions  

The results of the LST analysis reveal the spatial distribution of 

temperature changes within the MMC area between 2016 and 2024. The 

analysis highlights trends in LST and establishes correlations with patterns of 

urbanization and vegetation cover, offering valuable insights into the intensity 

and progression of the UHI effect in the region.  The analysis presented in 

Figures 2 and 3 illustrates the LST distribution for the study area in the years 

2016 and 2024. Both maps show LST values ranging from 26°C to 30°C; 

however, between 2016 and 2024, the maximum LST increased by 3.69°C, 

while the minimum and mean LST rose by 2.48°C and 2.51°C, respectively. 

Spatially, the central region of the study area, characterised by dense urban 

development, exhibits the highest LST values. In contrast, the northern and 

northeastern regions, which consist largely of less urbanized or vegetated 

areas, display relatively lower LSTs. This consistent increase in LST values 

indicates an intensification of the UHI effect, likely due to urban expansion 

and reduced vegetation cover. 

Similarly, the NDVI reveals noticeable changes in vegetation cover over 

the eight years, where the maximum NDVI increased slightly, while the 

minimum NDVI decreased, and the mean NDVI showed a marginal increase 

of 0.0106. The most significant decline in NDVI values is observed in the 

central parts of MMC, primarily due to the expansion of built-up areas and the 

consequent loss of vegetation. NDVI serves as a key indicator for assessing 

vegetation distribution across the city. While overall vegetation cover in MMC 
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remains limited, notable vegetated zones are found in areas such as 

Kekanadura North, Kekanadura Central, and Deeyagaha East. Although 

urbanization expanded, the slight increase in mean NDVI may be due to 

localized greening efforts or vegetation growth in peripheral areas. 

Nonetheless, the overall vegetative health appears relatively stable, with 

limited but positive change.  

The maximum NDBI value increased from 0.218 to 0.276, suggesting a 

5.8% increase in built-up intensity, while the mean NDBI slightly increased 

by 0.007 in study period. The results indicate a notable increase in built-up 

areas over the eight-year period, driven largely by population growth and 

subsequent urban expansion. These changes confirm the expansion of urban 

infrastructure, especially in central Matara, aligning with the observed 

increase in LST. This spatial pattern underscores the ongoing transformation 

of land cover from vegetated to impervious surfaces, contributing to the 

growth of urban infrastructure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: LST, NDVI, NDBI and UHI in 2016 

The concurrent increase in LST and NDBI, alongside the slight rise in NDVI, 

highlights the significant influence of urbanization on surface temperature 

patterns (Table 3). These results indicate a clear upward trend in LST 

throughout the MMC area, primarily driven by continuous urban expansion 

and the reduction of vegetative cover. The findings emphasize the urgent need 

for sustainable urban planning interventions, particularly the protection and 
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enhancement of urban green spaces, to effectively mitigate the intensifying 

UHI effect in the region. 

Table 3:  LST, NDBI, and NDVI values in 2016 and 2024 

Year Max LST (°C) Min LST (°C) Mean LST (°C) 

2016 26.37 17.66 22.71 

2024 

+/- 

30.06 

3.69 

20.14 

2.48 

25.22 

2.51 

 Max NDBI  Min NDBI  Mean NDBI  

2016 0.218 -0.405 -0.185 

2024 

+/- 

0.276 

0.058 

-0.404 

0.001 

-0.178 

-0.017 

 Max NDVI  Min NDVI  Mean NDVI  

2016 0.546 -0.152 0.3354 

2024 

+/- 

0.588 

0.042 

-0.191 

-0.049 

0.3460 

0.0106 

 

The statistical analysis of the pairwise relationships among LST, NDVI, 

and NDBI for the years 2016 and 2024 reveals notable trends. In the 2016 

correlation matrix, the relationship between LST and NDVI shows a 

correlation coefficient of -0.32, indicating a weak to moderate negative 

correlation. This suggests that areas with higher vegetation cover tend to have 

lower land surface temperatures, highlighting the cooling effect of green 

spaces. In contrast, the correlation between LST and NDBI is 0.58, reflecting 

a moderate positive correlation, which implies that built-up areas are 

associated with increased LST, aligning with the UHI effect. Furthermore, the 

correlation between NDVI and NDBI is -0.66, indicating a strong negative 

correlation. This confirms that vegetation and built-up areas are spatially 

inverse, where urban expansion typically reduces vegetative cover.  

Similarly, in 2024, a moderate negative correlation (r = -0.45) between 

LST and NDVI indicates that areas with greater vegetation cover tend to 

exhibit lower LSTs. This supports the premise that vegetated areas help 

mitigate urban heat.  
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Figure 3: Correlation Matrix among LST, NDVI, and NDBI in 2016 and 2024 

Conversely, a strong positive correlation (r = 0.68) between LST and 

NDBI suggests that increased built-up or impervious surfaces are associated 

with higher LST, highlighting the contribution of urbanization to the UHI 

effect. Additionally, a strong negative correlation (r = -0.77) between NDVI 

and NDBI demonstrates that urban expansion often leads to a reduction in 

vegetation cover (Figure 5).  

A comparative analysis between 2016 and 2024 reveals a significant 

increase in UHI intensity. Several areas, including Weliweriya East, 

Kadeweediya East, Isadeen Town, Hittatiya West, Kotuwegoda North, and 

Weliweriya West, exhibit notably higher UHI values due to expanded urban 

development. The study of the relationships between LST, NDVI, and NDBI 

provides critical insight into identifying UHI patterns and estimating accurate 

LST values. Correspondingly, linear regression analysis shows a negative 

correlation between LST and NDVI, and a positive correlation between LST 

and NDBI. This indicates that built-up areas generally experience higher 

LSTs, while areas with dense vegetation show lower temperatures due to the 

cooling effect of vegetation and its ability to absorb CO₂. Consequently, many 

cities have adopted greening initiatives to mitigate rising temperatures. 

However, the ongoing conversion of forests into built-up areas has become 

a widespread phenomenon, contributing to shifts in climatic conditions and 

increased temperatures. Areas with the highest LSTs are often the focal points 

of UHI formation. The urban heat island effect poses a serious environmental 

and public health risk, driven by the concentration of buildings, roads, and 

infrastructure that consume energy and trap heat. 

Increased heat levels lead to higher energy demands for cooling and place 

pressure on water resources, especially impacting those involved in primary 

economic activities such as agriculture. Moreover, rapid changes in 

temperature and weather patterns are difficult for many urban residents to 

adapt to, heightening the vulnerability of urban populations to climate-related 
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stress. Comparison between 2016 and 2024, the UHI value has increased 

incredibly. Some of the study areas including Weliweriya East, Kadeweediya 

East, Isadeen Town, Hittatiya West, Kotuwegoda North, and Weliweriya West 

have a higher UHI value due to increased urban area. The study of the 

relationship LST between NDBI and NDVI helps to recognise that indicators 

of urban heat islands, moreover assist in determining the correct value of LST. 

The linear regression analysis results in positive and negative relations 

between LST with NDVI and NDBI. Mostly built-up areas comprise a higher 

value of LST than the surrounding areas. Where vegetation cover is located, 

that shows a low rate of LST because vegetation cover absorbs CO2. 

Therefore, many cities are planted with greenery. Converting forests into built-

up areas is a common thing in each region; on the other hand, climatic 

conditions are changed by this function temperature will be changed. Where 

the highest LST occurs, ition is prone to form UHI, which is a significant risk 

factor in urban areas. The concentration of buildings, roads, and other 

infrastructure and the replacement of vegetation require energy consumption, 

which absorbs and retains heat. Overheating demands higher electricity for 

cooling, and a water supply has health implications for residents. Especially, 

those who rely on primary economic activity, will be affected by the 

requirement for more water supply for crop production. Many people cannot 

bear the overheated environment in urban areas because sudden changes in 

weather patterns cannot be easily adapted to by those who survive in the city. 

4. Conclusion 

LST plays a crucial role in influencing climatic conditions and helps in 

identifying the spatial distribution of UHI. This study assessed the UHI trends 

in MMC for the years 2016 and 2024. Results show that built-up areas and 

bare land surfaces exhibit significantly higher surface temperatures, while 

vegetated zones maintain lower temperatures. However, MMC lacks 

substantial green cover within its urban core, although the surrounding rural 

and suburban regions possess relatively dense vegetation. 

The rise in both LST and NDBI indicates ongoing urban expansion within 

the study area. This trend is largely driven by population growth and the 

resulting increase in infrastructure, such as buildings and roads which are key 

contributors to UHI formation. The intensification of UHI poses risks to 

human health and well-being, which can be mitigated through proper urban 

planning and the promotion of green infrastructure. 

Several tactical actions are suggested in order to successfully reduce the 

UHI effect in the Matara Municipal Council area. First, LST can be 

considerably decreased by creating parks, gardens, and trees to increase 

vegetation. By acting as a carbon sink, encouraging evapotranspiration, and 



Nuskiya et al.  Journal of Colombo Geographer 

 

84 

 

providing shade, vegetation helps to improve air quality and create cooler 

urban microclimates. Second, by reflecting sunlight, cool roofing materials 

and light-colored pavements can reduce heat absorption and subsequently 

lower surface temperatures. These materials are successful in preventing UHI, 

despite the fact that their initial costs may be higher. Thirdly, encouraging 

compact urban growth, mixed land use, and pedestrian-friendly infrastructure 

can help lower building energy use and vehicle emissions, which will help 

cool cities even more. Another important factor is public awareness; informing 

people about the origins and effects of UHI, as well as the advantages of 

lowering LST, can promote environmental stewardship and community 

involvement. Furthermore, the creation and implementation of urban policies 

that prioritise green infrastructure and environmental sustainability are 

essential for directing future land use, vegetation management, and 

construction. Lastly, adding more greenery improves the aesthetic appeal of 

urban areas and lowers LST, which may draw tourists who appreciate varied 

and natural urban landscapes. 
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