
 

Colombo Economic Journal (CEJ)  

Volume 3 Issue 2, December 2025: PP 69-92. 

ISSN  2950-7480 (Print) 

  ISSN 2961-5437 (Online) 

Copyright: © 2025 The Author(s) 

Published by Department of Economics,  

University of Colombo, Sri Lanka 

 Website: https://arts.cmb.ac.lk/econ/colombo-                                                                             

economic-journal-cej/ 

 

G. M. Ogungbenle1, W. Sirisena2, C. Ukwu2, J. S. Adeyele1 
1Department of Actuarial Science, Faculty of Management Sciences, University of 

Jos, Nigeria 
2Department of Mathematics, Faculty of Natural Sciences, University of Jos, 

Nigeria 

 

  Corresponding email:  moyosiolorun@gmail.com    

Received: 14 May 2025, Revised: 13 November, 2025, Accepted: 23 November 2025. 

Abstract: 

The current method of estimating the force of interest does not have the potential to 

account for small interest rates; hence it is less suitable for actuarial valuations. The 

paper attempts to suggest refinements to the existing method to capture interest rate 

dynamics accurately for actuarial valuation as the objective. The empirical 

underpinnings of instantaneous interest rate model are explored to conduct deep 

stress analysis through model equations and assess the degree to which the change 

in interest rate intensities can influence the long-run outcomes of some insurer’s 

financial instruments. The findings provide insight into the robustness of these 

products in diverse interest rate environments, highlighting key factors that govern 

their sensitivity. Although, both the estimated and its limiting values coincide within 

an equilibrium interval 20 40M  , computational evidence from the results 

reveals that the trajectory of the limiting interest rate intensity within 0 5M   is 

downward-sloping, representing a decreasing interest rate intensity over time while 

the trajectory of the estimated intensity is a curvature within 5M  . The force of 

interest's convergence to a stable 5% reflects the modelling equations' resilience and 

the dominance for a sustained growth factors across time. This type of behavior is 

characteristic of long-term life insurance instruments such as pensions or annuities 

where early volatility gives way to stable, compounding growth over decades. It is 

therefore recommended that the modelling equations be adopted by pricing actuaries 

when conducting interest rate sensitivities as the investment year progresses.  

Keywords: Refinements, Valuation, Instantaneous, Robustness, Convergence, 

Intensities 
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Introduction 

 

The current method of estimating the force of interest   in actuarial finance and in 

financial engineering does not have the potential to account for small interest rates, 

nonlinear changes in rates, speculative financial instruments or sudden rate changes, 

hence it is less suitable for actuarial valuations. To the best of our knowledge, the 

current form  log 1e i  where i  is the interest rate and commonly applied in 

estimating the interest rate intensities in actuarial valuation has not been analytically 

justified and hence cannot be regarded as a mathematical model. The inability of the 

current method to account for small interest rates, that is as it does not account for the 

limit  
0

lim log 1e
i

i


 , nonlinear changes in rates, speculative financial instruments or 

sudden rate changes makes it less suitable for actuarial valuations. Due to these 

significant evident limitations, a more sophisticated methodology such as Euler-

Maclaurin’s series which includes higher order terms, provides a more accurate and 

flexible technique for modelling interest rate intensity particularly in cases requiring 

precise adjustments for changing interest rates or long-term financial projections.  

 

The motivation for the works reviewed are two-fold. Firstly, the massive fluctuations 

which impact the insurance markets commencing with the subprime underwriting and 

pricing crisis in the developing economies holistically sharpened the knowledge of 

how crucial the role of interest rates regime is for a stable economy by reason of the 

interdependencies, hence robust estimation technique is required for the drastic life 

contingencies. Secondly, the ubiquitous non-analytic representation of interest rate 

intensities in actuarial finance has to be critically investigated. Thus, the pricing crisis 

describes in a regrettably painful manner that decisive investment variables strongly 

fluctuate over time horizon, ruling out, too simplicity methodologies, which fail to 

justify the empirical actuarial valuation. Since extant literatures have rarely 

developed actuarial models that are deeply rooted in analytic functional depth for the 

interest rate intensities, this paper significantly contributes by (i) developing a 

rigorously analytic actuarial model for the functional form for the interest rate 

intensities (ii) suggesting robust refinements to the current form and (iii) introducing 

a higher order Bernoulli polynomial to capture interest rate trajectories accurately for 

actuarial valuations. The goal is to introduce analytic methodologies to capture 

interest rate dynamics accurately in future actuarial valuations. Consequently, the 

study examines how variations in interest intensities under complex or constant 

instantaneous interest rate frameworks empirically compare with limiting its 

function. 
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The interest rate intensity plays a crucial role in valuing actuarial future liabilities, 

determining insurance premiums and evaluating the financial health of pension plans 

or other long-term financial products. Actuaries use the force of interest as a tool for 

continuous discounting which reflects the time value of money and ensures that 

insurance cash flows are appropriately adjusted for the effects of interest over time. 

Kasozi and Paulsen (2005) used the force of interest to model the insurance ruin 

probability function by solving the linear Volterra integral equation to generate value 

function but the functional form for the interest rate intensity was not developed. 

However, Udoye et al. (2021) applied step-wise extension of Vasicek model to jump 

diffusion model using Ito’s formula in modelling interest rates in the presence of 

discontinuities. In constructing models for Tabarru funds using the Makeham’s law, 

Muzaki, Siswanah and Miasary (2020) applied the force of interest to estimate the 

cost of insurance while Kutub et al. (2011) applied present value function with 

specified interest rates to estimate life annuity and term insurance. However, the 

functional form for the interest rate intensity was not analytically developed by the 

authors. 

The interest rate intensity     is the instantaneous rate of growth of an amount 

assuming continuous compounding. It is applied to model how amounts grow or 

shrink over time in financial models where interest is accrued continuously rather 

than at discrete intervals. In actuarial valuation, the force of interest assists to compute 

the present value of future liabilities, like insurance claims or pension benefits as well 

as determine how premiums could be set for insurance contracts. Castellares, Patricio 

and Lemonte (2022) applied a fixed force of interest to prepare mortality table under 

the framework of Makeham’s mortality law. Kusumawati et al. (2024) applied 

lognormal distribution to model interest rates at random.  Zhang (2007) estimated net 

single premium under random interest rates. The force of interest is central in the 

valuation of life insurance policies where future insurance benefits is discounted to 

the present (Luptakova & Bilikova, 2014). Mircea and Covrig (2015) and Aalaei 

(2022) both applied fuzzy interest rates to model annuity pricing under uncertainty. 

The mathematical derivations for the interest rate intensity under algorithmic 

expansion was not within their scope. 

 

According to Liu (2010), Wu, Lin and Wang (2013) and Janardana and Wiriandi 

(2024), life insurers usually determine the present value of the future policy benefits 

that will be paid out upon the death of the insured. For insurance products, the 

premium is often estimated as the present value of the future insurance liabilities, 

which are determined based on expected benefits and expenses. The premiums are 

set such that they are sufficient to cover the insurer's obligations. To estimate the 
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premium for a life insurance policy, actuaries use the following approach: (i) the 

expected benefit payments are modeled as random cash flows occurring at future 

times (ii) the expected future liabilities are discounted to the present using the force 

of interest. Once the present value of future liabilities is determined, actuaries 

compute the premium required to ensure that the insurers meet their obligations.  

 

This premium must cover both the cost of the insurance benefits and the expenses of 

the insurer, adjusted for the time value of money using the force of interest. In pension 

planning, actuaries apply the force of interest to estimate the present value of pension 

obligations, that is the amount needed to be set aside today to cover future pension 

payments. In pension plan valuations, the force of interest is used to determine how 

the pension plan’s liabilities grow and how the invested assets should grow to meet 

these obligations. The present value of future liabilities or obligations is a key 

component in actuarial valuations for products like annuities, life insurance and 

pension plans. These liabilities are discounted to the present using a force of interest 

to reflect the time value of money. Actuaries often deal with long-term cash flows 

such as those in pension plans, investment funds or annuities where payments are 

made at regular intervals. The force of interest is used to continuously discount these 

payments to the present. In reality, the force of interest is rarely constant. Actuaries 

account for this by using a varying force of interest in their models, based on changing 

interest rates or inflation expectations. This variability can significantly affect the 

present value calculations, impacting the determination of premiums, reserves and 

other actuarial calculations. As a result of this observation and to overcome this 

problem, it is assumed that the force of interest is constant. In the literature, there is 

none that develops model for the force of interest as applicable in life insurance. 

 

Let p be the constant cashflow payments at integer time steps s  where 

 1,2,3,...,s m . Then the present value of these payments is 
1

m
s

s

s

PV pe 



 . The 

Euler-Maclaurin series for a smooth function  f  truncated to one correction term 

is defined as 

             
1 1

1 1
1 1

2 12

mm

s

f s f d f m f f m f 


         (1) 

   f pe f p e                  (2)  

 
11 1

mm m

s s mp p p
f d pe d e e e     

  

      
      

   
    (3) 

Substitute (2), and (3) into the series (1) yields 
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     
1

1 1

2 12

m
m m m

s

p p
f s e e pe pe p e p e      

 

     



 
       
 

  (4) 

   
2 12

m m mp p p
PV e e e e e e     







               (5) 

Define U e   and 
mV e  , then the present value function is given as 

     
2 12

2 12

s

p p p
PV U V V U V U

U V V U V U
p








     

     
     

  

    (6) 

Unless the present value function PV  is known from the observed market price of 

an instrument such as level annuity, bond, pension obligation or insurance liability, 

equation (1h) is intractable to solve.  

 

Material and Methods   

Following Goldstein and Lee (2020) and  Narlitasari et al. (2022), if yd defines the 

number deaths between ages y and 1y  , then the uniform distribution of death 

assumption will have yd deaths per unit time for 0 1   and as a result, the 

number of lives surviving at age yl   is given by  

 1y y y y y yl l d l l l             (7) 

 1 11y y y y y yl l l l l l                (8) 

The continuous whole life insurance function yA  is defined by 

1

00

1 1 1 1

1 1
y y y

y y

A l d l d
l i l i

 

 
 

 
 

 



    
     

    
     (9) 

Let d d                         (10) 

1

0 0

1 1

1
y y

y

A l d
l i

 

 







 



  
  

 
      (11) 

Using the uniform distribution of death assumption on yl , we obtain 

  1 11y y y y y y

d
l l l l l l

d
        


                  (12) 
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 
1 1

1

0 00 0

1 1 1 1

1 1
y y y y

y y

d
A l d l l d

l i d l i

   

   
 

 


 
 

    

 

    
      

    
    (13) 

   1 1
1 1

0 00 0

1 1 1

1 1 1

y y y y
y

y y

l l l l
A d d

i l i l i

   
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 

 


 

     

 

      
      

       
  

(14) 

 
1 1

1

1

0 00 0

y y
y y y

y y

l l
A v v d v p p v d

l l

    

 
 

 
 

  



 

 
    

 
 

    (15) 

   
1 1

1 1
0 00 0

y y yA v q v d v q e d   

 
 

 
 



 

   
    

   
     (16) 

   
1

1 1
0 00

1
y y y

e e
A v q v q

 
 

 
   

  

 

   
    

     
    (17) 

   1 1
0 0

1 1
y y y

e e
A v q v q

 
 

 
   

  

 

   
     

    
    (18) 

   1 1
0 0

1
y y y

v d
A v q v q 

 
  

 

 

   
    

   
      (19) 

   1 1
0 0

1
y y y

v iv
A v q v q 

 
  

 

 

   
    

   
     (20) 

   
1 1

1

1 1
0 0

1y y

y y y y

v i i
A v q v q A

 
 

 
   

   


 

     
       

     
    (21) 

Recall that in xA , payment is delayed till the end of the year and to account for the 

effect of this delay, the present value function is multiplied by e 
 where   

represents the period through which payment is delayed. 

1i e          (22) 

1

1

y
y y

y

Ae
A A

eA









 
   

 
     (23) 

recall that, 

M
M

a i a           (24) 

Hence  

 
 

   
 1 1

M MM M

M e eM M i M

a a i a a

 



 
   

 
   (25) 
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1 y

M M yM

M M e M A

a Aa a





 
    

 
     (26) 

 

 

1 1 1

1 1

1

M M
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M

y

M
y

M M e M e M e

a a e e

A M

A e
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 





  





 



       
          

       
 
 


 



(27) 

The last term in (27) can be written as 

   
1 1 1

11

1

MM M

M e M e M

ee e

e

 

 



  

   

       
         

       
 

 

 (28) 

The Euler-Maclaurin Series 

   
         

               
 

   
 

 

1
1 1 2

0

3 3 2 1 2 14 2

1
2 2

0
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1 0

2 2!
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4! 2 !

2 !

M M M

M M

f f B
f y dy f f

B B
f f f f

M

B y
f y dy

M

 


   
 

       
   







 (29) 

1M   is an integer and  f y  has 2M  continuous derivatives in 0 1y  . The 

rB , 0,1,2,3,..., 2r M  are defined by 

 
01 !

r

r

y
r

B yy

e r








        (30) 

0 1 2 3 5 7 9 4

6 8 10

1 1 1
1; ; ; 0; ;

2 6 30

1 1 5
; ; ;...

42 30 66

B B B B B B B B

B B B

         

   

  (31) 

Suppose that    1f y h y  , then 
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



  (32) 

The function  h y  has 2M  continuous derivatives whenever 1x   

          
2 1 2

2

1

2 2 ! 2 1 cos 2
M M M

M

j

B y y M j j y 


  



     (33) 

If 1, 2,3,...M  , it follows that 

      
2 2

2 2

1

2 2 ! 2
M M

M M

j

B x x B k j


 



       (34) 

The last term in equation (28) mirrors the Bernoulli polynomial (30) and the 

expansion is given in equation (35) 
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M

M









   





    





 
  

   
 

 

 
    

 
 
 
 
 
  
 

 
      

 
  
  

  (35) 

 

However, when 1M    in the numerator of (35) yields 
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2 4 6 8

10

1 1 1 1 1
1

1 2 12 720 30240 1209600

1
...

47900160

e


    



     


 

   (36) 

 

Consider the quartic estimation and ignore the fifth term and above in the numerator 

and denominator of (35). 

2 2 4 4

2 4

1 1 1
1

2 12 720
1 1 1

1
2 12 720

M

M M M
M

a

  

  

  



  

    (37) 

Subtracting 1  from both sides of (37), 

2 2 4 4

2 4

1 1 1
1

2 12 7201 1
1 1 1

1
2 12 720

M

M M M
M

a

  

  

  

  

  

   (38) 
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1 1
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1

1 1 1
1
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M

a
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  

 
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 (39) 
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  (40) 

1 M

M M

M aM

a a



          (41) 
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  (44) 
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    (45) 
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k
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    (46) 

   
 
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M

   

  

    

    
     (47) 

Substitute (41) into (47) to get 
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                
      

     
  



         
    

 (48) 

This equation (47) is of the form; 
4 3 2

1 2 3 4 5 0a a a a a             (49) 

 4

1 1a M    ; 
2 0a  ;  2

3 60 60 60a M      ; 

 4 360 360 360a M     ; 5 720a  . To study the behavior of the equation in 

the long-run, we extend period M  as far as 100  to represent infinity. The modelling 

equations were derived in Appendix A and are based on 5%  rate of interest. The 

solution to the modelling equations in in table 1 are presented in Appendix B. 

 

Discussion of Results 

 

The modelling equations (Appendix A) present a rigorous empirical description 

where the growth of an insurance fund over time is described by a polynomial of high 

degree capturing complex investment dynamics. This is because insurer’s financial 

systems can be characterised by a non-linear and chaotic manner, such that small 

changes in the underlying variables or initial conditions could lead to oscillatory 

behavior. This occurs where interest rates are influenced by a combination of factors 

which interact in a non-linear manner. When this evolves, the force of interest will 
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not assume a simple monotone pattern but instead may exhibit oscillations as a 

reflection of the underlying complexity. The modelling equations obtained represent 

an investment environment where different forces both speculative (complex) and 

real interact to produce equilibrium. Obviously In table 1 (Appendix B), it is 

interesting to observe that the real rates in root 1, and the real parts of the complex 

rates in both root2, root3, add up to root4, in absolute values that is, 

1    root2     root3 4root real part of real part of root   while the sum of the 

imaginary rates frizzle out. The real part represents actual economic factors while the 

complex parts represent the speculative influences. The real roots are the observed 

values such as stable interest rates or growth factors in the economic modelling 

equations. However, the complex roots which conjugate each other define some more 

theoretical factors such as periodic investment conditions that may not have a straight 

forward market equivalence but still impact the financial system.  

 

The zeroes obtained evolve from solving the underlying fourth-degree equation 

governing the interest rate intensities over a 100-year investment horizon. The rows 

correspond to an investment period M k , with four zeroes of the modelling 

equations but the resulting limiting value of interest rate intensities is in the last 

column of the table. The behavior of these roots over time reflects the evolving 

dynamics of the insurer’s financial system being modelled. Root 1 displays an 

interesting metamorphosis across the investment horizon. At 1M  , the intensity is 

a negative real number, representing an initially loss-driven or unfavorable driven 

investment condition. From 2M   to 51M  , the interest rate (root 1) becomes 

positive real number, and suggests a shift into a favorable investment condition in a 

period of real and stable growth. However, from 52M  ,upwards, root 1 becomes 

negative complex numbers, indicating the commencement of oscillatory behavior 

with a damping effect. Consequently, this transition may result in long-run instability 

or changing market dynamics, possibly associated with policy changes or 

macroeconomic factors governing the investment at the long run. 

 

Root 2 commences as a positive complex number at 1M  , which suggests initial 

volatility with growth potential-characteristic of speculative or emerging investment 

conditions. However, from 2M  , to 100M  , root 2 becomes negative complex 

number. This adverse shift indicates there is an auxiliary component of the financial 

system describing an economic drag and causing continuous cyclical decline. The 

economic drag may have evolved due to the systemic risks, market inefficiencies. 

Consequently, these impact negatively to the interest rate intensity throughout the 

investment period. 
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Root 3 resembles varying market movement. It starts as a positive complex number 

at 1M  , similar to root 2, indicating early volatility. However, it progressively 

shifts to a negative complex number between 2M   and 51M   representing an 

extended period of decline governed by cyclical behavior. Interestingly, from 

52M   to 100M  , root 3 becomes a positive real number. This suggests a 

component within the financial system, after a period of instability, which transforms 

into a stable level of positive growth, possibly a maturing investment that seems to 

admit long-term value structural adjustment. Root 4 remains real and positive 

throughout the entire 100-year period. Its consistent positive values admit that it is 

the dominant intensity in the system, suggesting a stable and reliable driver of the 

interest rates. This root may likely reinforce the crucial strength of the investment 

modelling equations, probably a basic economic factor or policy mechanism, which 

ensures continuity and long-term stability. 

 

The final column, defining the limiting value of the force of interest, represent a slow 

but steady convergence towards approximately 5% annually. Although it initially fell 

slightly below this mark, the values grow upward as M  increases, indicating a level 

of diminishing effect of the volatile or complex roots. Across time, the interest rate 

intensities stabilise in line with the behavior of root 4. This convergence indicates 

that in spite of short-term volatility and mid-term complexity, the investment 

environment being modelled, attains a stable and predictable level at the long run. 

The modelling equations is a replica of an investment environment associated with 

instability or possible losses, transits through a period of recovery and growth, 

encounters speculative cyclical influences and finally settles into long-term 

equilibrium. The interest rate convergence to a stable 5% is a proof of the insurer’s 

system's resilience and the dominance of sustained growth factors over time. This 

manner of behavior characterises long-term financial instruments such as pensions or 

annuities where early volatility gives way to stable, compounding growth over long 

period of time. In view of Stehlik et al. (2024), during times of negative interest rates 

or unusual market conditions, the force of interest may be represented as a negative 

and or a complex number.  

 

Figure 1 column 4 and 5 (Appendix C) compares the estimated interest rate intensity 

with the limiting value. The limiting values of the interest rate intensity may not be 

obtainable in investment because its trajectory defines a straight line. In Figure 1, 

both the trajectory of the limiting value and the trajectory of the estimated value 

intersect within 20 40M   called the equilibrium interval. In figure 1, the 

trajectory of the estimated force of interest is a curve indicating that the rate of interest 

is changing continuously over time. The curvature provides insights into how the rate 

of interest evolves whether it is accelerating or decelerating. Obviously, the interest 
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rate intensity is increasing over time. This means that the rate of interest is getting 

higher as time increases. The implication is that as the force of interest increases, the 

growth of the investment or accumulation of value will accelerate because the rate at 

which interest is being applied is rising. This defines a condition where the market 

interest rate is rises steadily over time or a condition where demand for a particular 

asset increases over time causing interest rates to rise. The smooth curvature 

demonstrates that the model equations are robust to capture variations in the market.  

 

Consequently, the curve of the limiting interest rate intensity within 0 5M   is 

downward-sloping representing a decreasing interest over time. This suggests that the 

interest rate is becoming lower as time progresses. As the force of interest decreases, 

the growth of the investment will slow down since the rate at which interest is added 

to the investment is reducing. This might occur in a situation where inflation is 

expected to decrease or where Central Bank reduces interest rates over time. As 

5M  , the curve becomes a straight line. The force of interest is changing at a 

constant rate indicating that it is either linearly increasing or decreasing over time. 

The interest rate is either rising or falling at a consistent rate causing the investment's 

growth to follow a predictable pattern.  

 

Hoang (2015) constructed the following ruin probabilities under constant interest rate 

intensity 

     
0

1s e
U ue e ds S e ue S e

 
    

     


 
      

 
 (50) 

where  U   is the surplus up till time  ,   the premium rate,  
 

1

M

m

m

S Y





   is 

the aggregate claim,     mM Sup m T    is the number of claims, 
1

m

m k

k

T 




is the time of the mth claim and  0U u  but there was not any analytic evidence 

that the author developed any analytic model for the force of interest and hence 

assumed 0.1   

Under some investment conditions, interest rates or the forces driving interest 

rate changes may be subject to periodic fluctuations as a result of the recurring 

investment conditions, such as the speculative rise and fall of economic activity in a 

market economy, including expansion and contraction phases. These cycles can result 

in oscillating interest rates as the Central Bank modifies its policies in response to the 

subsisting economic environments. Inflation rates may rise or fall periodically, 
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impacting the interest rates. However, deflationary pressures may lead to oscillations 

in the effective rate of interest. Central banks often adjust interest rates in response to 

economic conditions, intending to contain inflation, manage unemployment or 

stimulate growth. These rate adjustments may not be steady as they could occur in a 

more stepwise or oscillatory manner in response to changing economic conditions. If 

a Central Bank’s policy involves periodic interventions, such as adjusting interest 

rates every periodically in connection to a particular economic problem, the interest 

rate intensities may be characterised by oscillations.  

 

Investors may react to the perceived changes in risk, socio-political contingencies or 

other market shocks. As a result, the investment markets are not only driven by the 

forces of supply and demand but also by the speculative investor’s sentiment and 

behavioral responses. This may result in oscillations in the effective interest rates as 

the market adjusts expectations about future growth, inflation or risk.  

External shocks, such as socio-political events, or sudden economic crises, may cause 

volatility in interest rates in the interim. If these shocks occur periodically or in a 

manner which impacts the economy cyclically, they may cause the force of interest 

to oscillate. When there are periods of high investment or borrowing demand, interest 

rates may rise and if demand declines, interest rates might fall. Consequently, if this 

demand fluctuates with some level of regularity such as seasonal demand for capital 

or cyclical shifts in investment patterns, the force of interest could exhibit oscillations.  

Investors’ expectations about future interest rates or economic conditions can cause 

oscillations in the interest rate intensities. If investors anticipate future bearish or 

bullish investment conditions, their expectations can lead to oscillatory changes in 

short-term interest rates, which in turn influence the force of interest. Behavioral 

factors such as herd’s behavior can introduce oscillations in financial markets. Herd-

behaviour suggests that investors tend to imitate the financial behaviour of the 

majority of the herd. Herding is widely acknowledged in the investment market as 

the reason behind dramatic rallies and sell-offs. 

 

Conclusion 

In conclusion, this study has explored the sensitivity of instantaneous interest rate in 

comparison with its limiting functions. By analysing the sensitivity of these financial 

instruments to variations in instantaneous interest rates, the study provides valuable 

insights into the potential risks and opportunities for life insurers, investors and 

actuarial scientists. The results suggest that a deeper understanding of instantaneous 

interest rate movements is essential for the valuation of annuity pricing and 

accumulation strategies especially in volatile or uncertain financial climates. 

Moreover, the study emphasises the need for improved models that account for such 

sensitivities in order to enhance the robustness of financial planning and investment 
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decision-making. Future research may focus on refining these models to incorporate 

more dynamic components, such as time-varying interest rate volatilities and 

alternative financial assumptions, to capture the complexities of the financial markets 

so that insurance practitioners can align their strategies within the evolving economic 

frameworks, ensuring more accurate pricing, risk management and investment 

outcomes. 
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APPENDIX A 
4 25 300 73800 3600 0; 1M           (A1) 

4 21492 17546 110722 5444 0; 2M          (A2) 

4 27990 47390 147659 7317 0; 3M          (A3) 

4 225487 89232 184610 9219 0; 4M          (A4) 

4 262385 143071 221575 11151 0; 5M         (A5) 

4 2129482 208907 258556 13112 0; 6M         (A6) 

4 2239979 286742 295551 15101 0; 7M         (A7) 

4 2409476 376573 332560 17120 0; 8M         (A8) 

4 2655973 478403 369584 19167 0; 9M         (A9) 

4 2999870 592230 406622 21243 0; 10M         (A10) 

4 21463968 718054 443674 23348 0; 11M         (A11) 

4 22073465 855877 480741 25481 0; 12M         (A12) 

4 22855962 1005696 517821 27643 0; 13M         (A13) 

4 23841459 1167514 554916 29832 0; 14M         (A14) 

4 25062355 1341329 592025 32050 0; 15M         (A15) 

4 26553452 1527142 629147 34295 0; 16M         (A16) 

4 28351949 1724953 666284 36568 0; 17M         (A17) 

4 210497446 1934761 703434 38868 0; 18M        (A18) 

4 213031943 2156567 740598 41195 0; 19M        (A19) 

4 215999840 2390371 777775 43549 0; 20M        (A20) 
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4 219447936 2636172 814965 45930 0; 21M        (A21) 

4 223425433 2893972 852169 48337 0; 22M        (A22) 

4 227983929 3163769 889385 50771 0; 23M        (A23) 

4 233177426 3445564 926615 53230 0; 24M        (A24) 

4 239062323 3739357 963857 55714 0; 25M        (A25) 

4 245697419 4045148 1001112 58224 0; 26M        (A26) 

4 253143916 4362937 1038380 60759 0; 27M        (A27) 

4 261465412 4692723 1075660 63319 0; 28M        (A28) 

4 270727908 5034508 1112952 65903 0; 29M        (A29) 

4 280999805 5388291 1150256 68511 0; 30M        (A30) 

4 292351901 5754071 1187571 71143 0; 31M        (A31) 

4 2104857398 6131850 1224899 73798 0; 32M        (A32) 

4 2118591894 6521627 1262238 76476 0; 33M        (A33) 

4 2133633390 6923402 1299589 79177 0; 34M        (A34) 

4 2150062286 7337175 1336950 81901 0; 35M        (A35) 

4 2167961382 7762946 1374323 84646 0; 36M        (A36) 

4 2187415879 8200716 1411707 87413 0; 37M        (A37) 

4 2208513375 8650483 1449101 90202 0; 38M        (A38) 

4 2231343871 9112249 1486506 93011 0; 39M        (A39) 

4 2255999767 9586013 1523921 95841 0; 40M        (A40) 

4 2282575863 10071776 1561346 98691 0; 41M        (A41) 



 

Higher order Polynomial Technique of Measuring Interest Rate Intensity: A Bridge Between Life 
Insurance Valuation and Investment 

 

87 

 

4 2311169359 10569537 1598781 101562 0; 42M        (A42) 

4 2341879855 11079296 1636226 104451 0; 43M        (A43) 

4 2374809351 11601053 1673680 107360 0; 44M        (A44) 

4 2410062247 12134809 1711144 110288 0; 45M        (A45) 

4 2447745343 12680564 1748617 113234 0; 46M        (A46) 

4 2487967839 13238317 1786099 116198 0; 47M        (A47) 

4 2530841334 13808068 1823590 119180 0; 48M        (A48) 

4 2576479830 14389818 1861090 122180 0; 49M        (A49) 

4 2624999726 14983567 1898598 125196 0; 50M        (A50) 

4 2676519822 15589344 1936115 128229 0; 51M        (A51) 

4 2731161318 16207060 1973639 131279 0; 52M        (A52) 

4 2789047813 16836805 2011172 134344 0; 53M        (A53) 

4 2850305309 17478548 2048712 137425 0; 54M        (A54) 

4 2915062205 18132290 2086260 140521 0; 55M         (A55) 

4 2983449301 18798031 2123816 143632 0; 56M         (A56) 

4 21055599796 19475770 2161379 146757 0; 57M         (A57) 

4 21131649292 20165509 2198949 149897 0; 58M         (A58) 

4 21211735787 20867246 2236525 153051 0; 59M         (A59) 

4 21295999683 21580982 2274109 156218 0; 60M         (A60) 

4 21384583779 22306717 2311699 159398 0; 61M         (A61) 
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4 21477633274 23044451 2349296 162591 0; 62M         (A62) 

4 21575295770 23794184 2386899 165797 0; 63M         (A63) 

4 21677721265 24555915 2424508 169015 0; 64M         (A64) 

4 21785062161 25329646 2462123 172245 0; 65M         (A65) 

4 21897473256 26115376 2499743 175487 0; 66M         (A66) 

4 22015111752 26913105 2537370 178740 0; 67M        (A67) 

4 22138137247 27722833 2575002 182004 0; 68M         (A68) 

4 22266711743 28544560 2612639 185279 0; 69M         (A69) 

4 22400999638 29378286 2650282 188564 0; 70M         (A70) 

4 22541167734 30224012 2687930 191859 0; 71M         (A71) 

4 22687385229 31081736 2725582 195164 0; 7 2M        (A72) 

4 22839823724 31951460 2763240 198479 0; 73M         (A73) 

4 22998657220 32833183 2800902 201803 0; 7 4M        (A74) 

4 23164062115 33726905 2838568 205137 0; 75M        (A75) 

4 23336217210 34632627 2876239 208479 0; 76M        (A76) 

4 23515303706 35550348 2913915 211830 0; 77M        (A77) 

4 23701505201 36480068 2951594 215189 0; 78M         (A78) 

4 23895007696 37421787 2989278 218556 0; 79M        (A79) 

4 24095999592 38375506 3026965 221931 0; 80M        (A80) 

4 24304671687 39341224 3064657 225313 0; 81M         (A81) 

4 24521217182 40318941 3102352 228703 0; 82M         (A82) 
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4 24745831678 41308658 3140050 232100 0; 83M         (A83) 

4 24978713173 42310375 3177752 225504 0; 84M         (A84) 

4 25220062068 43324090 3215458 238915 0; 85M         (A85) 

4 25470081163 44349806 3253166 242333 0; 86M         (A86) 

4 25728975659 45387520 3290878 245756 0; 87M         (A87) 

4 25996953154 46437234 3328593 249186 0; 88M         (A88) 

4 26274223649 47498948 3366311 252622 0; 89M         (A89) 

4 26560999544 48572661 3404032 256064 0; 90M         (A90) 

4 26857495640 49658374 3441755 259511 0; 91M         (A91) 

4 27163929135 50756086 3479482 262963 0; 92M         (A92) 

4 27480519630 51865798 3517211 266421 0; 93M         (A93) 

4 27807489125 52987510 3554942 269884 0; 94M         (A94) 

4 281450620 54121221 3592676 273352 0; 95M         (A95) 

4 28493465116 55266931 3630412 276824 0; 96M         (A96) 

4 28852927611 56424642 3668151 280301 0; 97M         (A97) 

4 29223681106 57594351 3705891 283783 0; 98M         (A98) 

4 29605959601 58776061 3743634 287269 0; 99M         (A99) 

4 29999999496 59969770 3781379 290759 0; 100M        (A100) 

The limiting value of the force of interest is given by  
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APPENDIX B 

Presentation of Results 

Table 1: Interest Rate Intensity from Model Equations 

 1ROOT   2ROOT   3ROOT   4ROOT  LIMIT  

-25.3601 12.6557+20.5362000i 12.6557-20.5362000i 0.0487902 0.050000 

5.11237 -2.58058+2.8228900i -2.58058-2.8228900i 0.048791 0.0493902 

3.36729 -1.70804+1.6299500i -1.70804-1.6299500i 0.0487897 0.0491891 

2.51479 -1.28179+1.1424400i -1.28179-1.1424400i 0.048788 0.0490889 

2.00506 -1.02693+0.8789500i -1.02693-0.8789500i 0.0487906 0.049029 

1.66599 -0.85739+0.7146060i -0.85739-0.7146060i 0.0487918 0.0489891 

1.42427 -0.73653+0.6025580i -0.73653-0.6025580i 0.0487895 0.0489606 

1.24331 -0.646051+0.521380i -0.646051-0.521380i 0.0487908 0.0489392 

1.1028 -0.575795+0.459905i -0.575795-0.459905i 0.0487897 0.0489227 

0.990558 -0.519674+0.411761i -0.519674-0.411761i 0.0487896 0.0489094 

0.898841 -0.473816+0.373047i -0.473816-0.373047i 0.0487903 0.0488985 

0.822497 -0.435643+0.341247i 0.435643-0.3412470i 0.04879 0.0488895 

0.757959 -0.403375+0.314665i -0.403375-0.314665i 0.0487911 0.0488818 

0.702688 -0.375739+0.292115i -0.375739-0.292115i 0.0487903 0.0488753 

0.65482 -0.351806+0.272747i -0.351806-0.272747i 0.0487911 0.0488696 

0.612961 -0.330876+0.255932i -0.330876-0.255932i 0.048791 0.0488646 

0.576045 -0.312418+0.241197i -0.312418-0.241197i 0.0487914 0.0488602 

0.543243 -0.296017+0.228178i -0.296017-0.228178i 0.0487915 0.0488563 

0.513904 -0.281348+0.216593i -0.281348-0.216593i 0.0487915 0.0488529 

0.487506 -0.268149+0.206216i -0.268149-0.206216i 0.0487918 0.0488497 

0.463625 -0.256209+0.196869i -0.256209-0.196869i 0.0487926 0.0488469 

0.441919 -0.245356+0.188404i -0.245356-0.188404i 0.048793 0.0488443 

0.4221 -0.235447+0.180703i -0.235447-0.180703i 0.0487944 0.048842 

0.403933 -0.226364+0.173666i; -0.226364-0.173666i 0.0487951 0.0488398 

0.387219 -0.218007+0.167210i -0.218007-0.167210i 0.0487956 0.0488378 

0.371789 -0.210293+0.161266i -0.210293-0.161266i 0.0487968 0.048836 

0.357499 -0.203149+0.155776i -0.203149-0.155776i 0.0487982 0.0488343 

0.344228 -0.196514+0.150690i -0.196514-0.150690i 0.0488 0.0488327 

0.331868 -0.190335+0.145963i -0.190335-0.145963i 0.0488017 0.0488312 

0.320329 -0.184567+0.141559i -0.184567-0.141559i 0.0488037 0.0488299 

0.309531 -0.179169+0.137446i -0.179169-0.137446i 0.048806 0.0488286 

0.299404 -0.174106+0.133595i -0.174106-0.133595i 0.0488084 0.0488274 

0.289887 -0.169349+0.129983i -0.169349-0.129983i 0.0488111 0.0488262 

0.280926 -0.16487+0.1265870i -0.16487-0.1265870i 0.0488142 0.0488252 

0.272472 -0.160645+0.123388i -0.160645-0.123388i 0.0488181 0.0488242 

0.264483 -0.156652+0.120370i -0.156652-0.120370i 0.0488217 0.0488232 

0.256922 -0.152874+0.117517i -0.152874-0.117517i 0.0488259 0.0488223 

0.249755 -0.149293+0.114816i -0.149293-0.114816i 0.0488309 0.0488215 

0.24295 -0.145893+0.112255i -0.145893-0.112255i 0.0488358 0.0488207 

0.236481 -0.142661+0.109824i -0.142661-0.109824i 0.0488414 0.0488199 

0.230323 -0.139585+0.107512i -0.139585-0.107512i 0.0488475 0.0488192 

0.224454 -0.136654+0.105311i -0.136654-0.105311i 0.0488545 0.0488185 
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0.218853 -0.133857+0.103213i -0.133857-0.103213i 0.0488615 0.0488179 

0.213502 -0.131186+0.101210i -0.131186-0.101210i 0.0488695 0.0488172 

0.208384 -0.128631+0.0992967i 
-0.128631-

0.0992967i 
0.0488781 0.0488166 

0.203484 -0.126186+0.0974665i 
-0.126186-

0.0974665i 
0.0488874 0.048816 

0.198788 -0.123842+0.0957141i 
-0.123842-

0.0957141i 
0.0488973 0.0488155 

0.194282 -0.121595+0.0940346i 
-0.121595-

0.0940346i 
0.0489081 0.048815 

0.189956 -0.119438+0.0924233i 
-0.119438-

0.0924233i 
0.04892 0.0488145 

0.185798 -0.117365+0.0908760i 
-0.117365-

0.0908760i 
0.0489324 0.048814 

0.181798 -0.115372+0.0893890i 
-0.115372-

0.0893890i 
0.0489458 0.0488135 

-0.113454+0.0879587i -0.113454-0.08795870i 0.177947 0.0489604 0.0488131 

-0.111606+0.0865817i -0.111606-0.08658170i 0.174237 0.0489757 0.0488126 

-0.109826+0.0852551i -0.109826-0.0852551i 0.170659 0.0489923 0.0488122 

-0.108108+0.0839761i -0.108108-0.0839761i 0.167206 0.0490098 0.0488118 

-0.10645+0.08274200i -0.10645-0.08274200i 0.163872 0.0490286 0.0488114 

-0.104849+0.0815505i -0.104849-0.0815505i 0.16065 0.0490485 0.0488111 

-0.103302+0.0803993i -0.103302-0.0803993i 0.157534 0.04907 0.0488107 

-0.101805+0.0792864i -0.101805-0.0792864i 0.154518 0.0490928 0.0488103 

-0.100357+0.0782097i -0.100357-0.0782097i 0.151598 0.0491169 0.04881 

-.0989553+0.0771675i -0.0989553-0.0771675i 0.148768 0.0491425 0.0488097 

-0.097597+0.07615800i -0.097597-0.07615800i 0.146024 0.0491697 0.0488094 

-0.0962806+0.0751798i -0.0962806-0.0751798i 0.143362 0.0491987 0.0488091 

-0.0950038+0.0742313i -0.0950038-0.0742313i 0.140778 0.0492294 0.0488088 

-0.0937651+0.0733111i -0.0937651-0.0733111i 0.138268 0.0492619 0.0488085 

-0.0925625+0.0724179i -0.0925625-0.0724179i 0.135829 0.0492965 0.0488082 

-0.0913946+0.0715505i -0.0913946-0.0715505i 0.133456 0.049333 0.0488079 

-0.0902597+0.0707077i -0.0902597-0.0707077i 0.131148 0.0493717 0.0488077 

-0.0891565+0.0698885i -0.0891565-0.0698885i 0.1289 0.0494126 0.0488074 

-0.0880836+0.0690918i -0.0880836-0.0690918i 0.126711 0.0494558 0.0488072 

-0.0870396+0.0683166i -0.0870396-0.0683166i 0.124578 0.0495015 0.0488069 

-0.0860235+0.0675621i -0.0860235-0.0675621i 0.122497 0.0495498 0.0488067 

 -0.0850341+0.0668275i -0.0850341-0.0668275i 0.120467 0.0496009 0.0488065 

-0.0840703+0.0661118i -0.0840703-0.0661118i 0.118486 0.0496549 0.0488063 

-0.0831312+0.0654143i -0.0831312-0.0654143i 0.11655 0.0497122 0.048806 

-0.0822156+0.0647343i -0.0822156-0.0647343i 0.114659 0.0497726 0.0488058 

-0.0813227+0.0640712i -0.0813227-0.0640712i 0.112809 0.0498365 0.0488056 

-0.0804516+0.0634242i -0.0804516-0.0634242i 0.110999 0.0499039 0.0488054 

-0.0796016+0.0627928i -0.0796016-0.0627928i 0.109228 0.0499752 0.0488052 

-0.0787718+0.0621763i -0.0787718-0.0621763i 0.107493 0.0500507 0.048805 

-0.0779615+0.0615742i -0.0779615-0.0615742i 0.105793 0.0501303 0.0488049 

-0.07717+0.060986000i -0.07717-0.060986000i 0.104125 0.0502148 0.0488047 
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-0.0763966+0.0604111i -0.0763966-0.0604111i 0.102489 0.0503042 0.0488045 

-0.0756407+0.0598492i -0.0756407-0.0598492i 0.100882 0.050399 0.0488043 

-0.0749017+0.0592997i -0.0749017-0.0592997i 0.0993039 0.0504994 0.0488042 

-0.074179+0.05876230i -0.074179-0.05876230i 0.0977518 0.0506061 0.048804 

-0.0734719+0.0582364i -0.0734719-0.0582364i 0.0962246 0.0507192 0.0488038 

-0.0727801+0.0577217i -0.0727801-0.0577217i 0.0947206 0.0508395 0.0488037 

-0.0721029+0.0572178i -0.0721029-0.0572178i 0.0932383 0.0509676 0.0488035 

-0.07144+0.056724500i -0.07144-0.056724500i 0.0917759 0.0511041 0.0488034 

-0.0707909+0.0562412i -0.0707909-0.0562412i 0.0903319 0.0512498 0.0488032 

-0.070155+0.05576770i -0.070155-0.05576770i 0.0889046 0.0514054 0.0488031 

-0.069532+0.05530370i -0.069532-0.05530370i 0.0874917 0.0515723 0.048803 

-0.0689215+0.0548489i -0.0689215-0.0548489i 0.0860915 0.0517516 0.0488028 

-0.0683231+0.0544030i -0.0683231-0.0544030i 0.0847017 0.0519446 0.0488027 

-0.0677364+0.0539657i -0.0677364-0.0539657i 0.0833199 0.0521529 0.0488026 

-0.0671611+0.0535367i -0.0671611-0.0535367i 0.0819433 0.0523789 0.0488024 

-0.0665968+0.0531159i -0.0665968-0.0531159i 0.0805685 0.0526251 0.0488023 

-0.0660432+0.0527030i -0.0660432-0.0527030i 0.079192 0.0528945 0.0488022 

-0.0655+0.0522976000i -0.0655-0.0522976000i 0.0778089 0.0531912 0.0488021 

 

 

Appendix C 

The Trajectories of Interest Rate Intensity and its Limiting Value 

 

Figure 1: Comparison of Estimated intensity and limiting value 


