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Abstract:

The current method of estimating the force of interest does not have the potential to
account for small interest rates; hence it is less suitable for actuarial valuations. The
paper attempts to suggest refinements to the existing method to capture interest rate
dynamics accurately for actuarial valuation as the objective. The empirical
underpinnings of instantaneous interest rate model are explored to conduct deep
stress analysis through model equations and assess the degree to which the change
in interest rate intensities can influence the long-run outcomes of some insurer’s
financial instruments. The findings provide insight into the robustness of these
products in diverse interest rate environments, highlighting key factors that govern
their sensitivity. Although, both the estimated and its limiting values coincide within
an equilibrium interval 20 <M <40, computational evidence from the results
reveals that the trajectory of the limiting interest rate intensity within 0 <M <5 is
downward-sloping, representing a decreasing interest rate intensity over time while
the trajectory of the estimated intensity is a curvature within M >5. The force of
interest's convergence to a stable 5% reflects the modelling equations' resilience and
the dominance for a sustained growth factors across time. This type of behavior is
characteristic of long-term life insurance instruments such as pensions or annuities
where early volatility gives way to stable, compounding growth over decades. It is
therefore recommended that the modelling equations be adopted by pricing actuaries
when conducting interest rate sensitivities as the investment year progresses.
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Intensities
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Introduction

The current method of estimating the force of interest A in actuarial finance and in
financial engineering does not have the potential to account for small interest rates,
nonlinear changes in rates, speculative financial instruments or sudden rate changes,
hence it is less suitable for actuarial valuations. To the best of our knowledge, the

current form Ioge(1+i) where i is the interest rate and commonly applied in

estimating the interest rate intensities in actuarial valuation has not been analytically
justified and hence cannot be regarded as a mathematical model. The inability of the
current method to account for small interest rates, that is as it does not account for the

limit I_in01 log, (1+ i) , nonlinear changes in rates, speculative financial instruments or
i

sudden rate changes makes it less suitable for actuarial valuations. Due to these
significant evident limitations, a more sophisticated methodology such as Euler-
Maclaurin’s series which includes higher order terms, provides a more accurate and
flexible technique for modelling interest rate intensity particularly in cases requiring
precise adjustments for changing interest rates or long-term financial projections.

The motivation for the works reviewed are two-fold. Firstly, the massive fluctuations
which impact the insurance markets commencing with the subprime underwriting and
pricing crisis in the developing economies holistically sharpened the knowledge of
how crucial the role of interest rates regime is for a stable economy by reason of the
interdependencies, hence robust estimation technique is required for the drastic life
contingencies. Secondly, the ubiquitous non-analytic representation of interest rate
intensities in actuarial finance has to be critically investigated. Thus, the pricing crisis
describes in a regrettably painful manner that decisive investment variables strongly
fluctuate over time horizon, ruling out, too simplicity methodologies, which fail to
justify the empirical actuarial valuation. Since extant literatures have rarely
developed actuarial models that are deeply rooted in analytic functional depth for the
interest rate intensities, this paper significantly contributes by (i) developing a
rigorously analytic actuarial model for the functional form for the interest rate
intensities (ii) suggesting robust refinements to the current form and (iii) introducing
a higher order Bernoulli polynomial to capture interest rate trajectories accurately for
actuarial valuations. The goal is to introduce analytic methodologies to capture
interest rate dynamics accurately in future actuarial valuations. Consequently, the
study examines how variations in interest intensities under complex or constant
instantaneous interest rate frameworks empirically compare with limiting its
function.
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The interest rate intensity plays a crucial role in valuing actuarial future liabilities,
determining insurance premiums and evaluating the financial health of pension plans
or other long-term financial products. Actuaries use the force of interest as a tool for
continuous discounting which reflects the time value of money and ensures that
insurance cash flows are appropriately adjusted for the effects of interest over time.
Kasozi and Paulsen (2005) used the force of interest to model the insurance ruin
probability function by solving the linear VVolterra integral equation to generate value
function but the functional form for the interest rate intensity was not developed.
However, Udoye et al. (2021) applied step-wise extension of Vasicek model to jump
diffusion model using Ito’s formula in modelling interest rates in the presence of
discontinuities. In constructing models for Tabarru funds using the Makeham’s law,
Muzaki, Siswanah and Miasary (2020) applied the force of interest to estimate the
cost of insurance while Kutub et al. (2011) applied present value function with
specified interest rates to estimate life annuity and term insurance. However, the
functional form for the interest rate intensity was not analytically developed by the
authors.

The interest rate intensity /1(5) is the instantaneous rate of growth of an amount

assuming continuous compounding. It is applied to model how amounts grow or
shrink over time in financial models where interest is accrued continuously rather
than at discrete intervals. In actuarial valuation, the force of interest assists to compute
the present value of future liabilities, like insurance claims or pension benefits as well
as determine how premiums could be set for insurance contracts. Castellares, Patricio
and Lemonte (2022) applied a fixed force of interest to prepare mortality table under
the framework of Makeham’s mortality law. Kusumawati et al. (2024) applied
lognormal distribution to model interest rates at random. Zhang (2007) estimated net
single premium under random interest rates. The force of interest is central in the
valuation of life insurance policies where future insurance benefits is discounted to
the present (Luptakova & Bilikova, 2014). Mircea and Covrig (2015) and Aalaei
(2022) both applied fuzzy interest rates to model annuity pricing under uncertainty.
The mathematical derivations for the interest rate intensity under algorithmic
expansion was not within their scope.

According to Liu (2010), Wu, Lin and Wang (2013) and Janardana and Wiriandi
(2024), life insurers usually determine the present value of the future policy benefits
that will be paid out upon the death of the insured. For insurance products, the
premium is often estimated as the present value of the future insurance liabilities,
which are determined based on expected benefits and expenses. The premiums are
set such that they are sufficient to cover the insurer's obligations. To estimate the

71



Colombo Economic Journal (CEJ) Volume 3 Issue 2, December 2025

premium for a life insurance policy, actuaries use the following approach: (i) the
expected benefit payments are modeled as random cash flows occurring at future
times (ii) the expected future liabilities are discounted to the present using the force
of interest. Once the present value of future liabilities is determined, actuaries
compute the premium required to ensure that the insurers meet their obligations.

This premium must cover both the cost of the insurance benefits and the expenses of
the insurer, adjusted for the time value of money using the force of interest. In pension
planning, actuaries apply the force of interest to estimate the present value of pension
obligations, that is the amount needed to be set aside today to cover future pension
payments. In pension plan valuations, the force of interest is used to determine how
the pension plan’s liabilities grow and how the invested assets should grow to meet
these obligations. The present value of future liabilities or obligations is a key
component in actuarial valuations for products like annuities, life insurance and
pension plans. These liabilities are discounted to the present using a force of interest
to reflect the time value of money. Actuaries often deal with long-term cash flows
such as those in pension plans, investment funds or annuities where payments are
made at regular intervals. The force of interest is used to continuously discount these
payments to the present. In reality, the force of interest is rarely constant. Actuaries
account for this by using a varying force of interest in their models, based on changing
interest rates or inflation expectations. This variability can significantly affect the
present value calculations, impacting the determination of premiums, reserves and
other actuarial calculations. As a result of this observation and to overcome this
problem, it is assumed that the force of interest is constant. In the literature, there is
none that develops model for the force of interest as applicable in life insurance.

Let pbe the constant cashflow payments at integer time steps S where

s€{1,2,3,..,m}. Then the present value of these payments is PV, = > pe™* . The

s=1

Euler-Maclaurin series for a smooth function f (é‘) truncated to one correction term

is defined as
D1 (9)=] (=3 (F ()= FW)e(F(m)-F'@) @
f(&)=pe™* = '(&)=—pse™™ (2)
T I TS P —5sm= P.s P _-om
!f(r,‘)dg—!pe df—{ 56 l (§e 5e ) (3)

Substitute (2), and (3) into the series (1) yields

72



Higher order Polynomial Technique of Measuring Interest Rate Intensity: A Bridge Between Life
Insurance Valuation and Investment

N Poo_Poon|,Liaom, nao), L _om .
Zf(s)=[—e5——e5 }L—(pe‘s + pe 5)+E(—p5e5 +pde) (4)

st o o 2
_P a0 _g-om a-om PS [ —sm s
— - 5
Sler el g (ernver)- e o) 9
Define U =e™® and V =e ", then the present value function is given as
P P po
PV, =—(U-V)+—=(V+U VvV -U
=2V By ) -2 -u)

(6)

u-v VvV+u VvV -U
=p + -0
o 2 12
Unless the present value function PV; is known from the observed market price of

an instrument such as level annuity, bond, pension obligation or insurance liability,
equation (1h) is intractable to solve.

Material and Methods
Following Goldstein and Lee (2020) and Narlitasari et al. (2022), if d, defines the

number deaths between ages y and y+1, then the uniform distribution of death

assumption will have £d, deaths per unit time for 0 <& <1 and as a result, the

number of lives surviving at age IM is given by
|+ =l,—-&d, =1, -&(1,-1,,) @)
_I _éjl +§Iy+1 (1 é:)l +§Iy+l (8)

The continuous whole life insurance function Ay is defined by

Zyzl__:-.!(lj:.j y+& 5_ ij( j y+§ €)

y 6=0 ¢
Letn=¢(-0=n+0=¢=dnp=d¢& (10)
+6
— 1 1( 1 )”
Ay =— — I, ..d7n (12)
l, 4 0-! 1+i) e
Using the uniform distribution of death assumption on |, we obtain
d
Iy+49+77 = (1_77) Iy+c9 + n|y+9+1 = a Iy+6+17 = _Iy+6 + Iy+0+l (12)
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1 n+0 q RIERYaE] n+0
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0
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Sl S S e

Recall that in A, , payment is delayed till the end of the year and to account for the

effect of this delay, the present value function is multiplied by e** where &
represents the period through which payment is delayed.

i=e* -1 (22)
A
Ay:(eilJAy :%:J_l (23)
recall that,
Axaw =ixa, (24)
Hence
M Mxi (-1 wm (-1

— = = X

a (am)xi QW)M (gm) 7 (25)
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. _
M_M J&€-1{_ M A (26)
a; awl A am A
M M [e*-1 M et —1 MA et -1
—_— = X = X = X
a_  aw ) {1—e‘““} A (1—e’““) i

A (27)
A, -MA
=—X—
A"

The last term in (27) can be written as
M A et -1 -M A et -1 1

X = X =
(1-e™) | 4 (e™-) L 4 { )

The Euler-Maclaurin Series

w{ f(y)dy+| £9(1)- f(”(o)]%
[ 19()- f<3>(o)]%+...+[f<m-l> (1)- f<2M-1>(o)](zB§;|ﬂ)! (29)

—i £ ( y)—EEZZMNf ;’!) dy

M >1 is an integer and f(y) has 2M continuous derivatives in 0 <y <1. The
B,,r=0,12,3,...,2M are defined by

r?

y 0 Bryr
= 30
e’ -1 ; r! (30)
Bozl;Blz_l;Bz:l;83:B5:B7:BQZO;B4:—i;
2 6 30
(31)
B —i- ——i'B _i-
42" 30" 66’

Suppose that f (y)=h(y+1), then
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imn+h(a+h($+_ﬁh(M):Tf(yﬁW+%h(M)

1

B ! B "
+?2!h (M)+—4h (M)+..+

(32)
N B,y [ (2M-1) } TlTZM Bow (y [y])dy
(2'\/') 1 (2m):!
B B _
() ﬂ%m@ﬁﬁﬁw”@ﬂ
The function h(y) has 2M continuous derivatives whenever X >1
B,y (y-[y])=2(2M)Y(27) ™ (-1)"" 3 ™ cos(2jxy) (33)
j=L
If M =12,3,..., it follows that
[Bowi (X—[X])| <[Bo| = 2(2K)1(277) ™" 3" (34)
=1

The last term in equation (28) mirrors the Bernoulli polynomial (30) and the
expansion is given in equation (35)
1

{ﬂ}{““l}

et -1
Leimar tmzzo b mepes 1o
2 12 720 30240
1 818
- - M
1209600 (35)

1 10 410

R
47900160
1-tgp e g e 1 g
2 12 720 30240 1209600
+#110
47900160

MG&G

However, when M = -1 in the numerator of (35) yields
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1/1 ;1—£/1+i/12— 1 A4+ 1 28— 1 A8
e’ -1 2 12 720 30240 1209600
+;/11°+

47900160

(36)

Consider the quartic estimation and ignore the fifth term and above in the numerator
and denominator of (35).

L+ iMa+ i m22o L meps
M_"2 12 720 an
& LS NI LIE Sy
27127 720
Subtracting 1 from both sides of (37),
M FESVPIRE R VLI LI I VEPY
M .2 . 12l IZO 1 38)
A 1- " A+ = A2~ )
27 127 720
1+1M/1+1M2/12—1M4/14—(1_11+1,12_1,14j
M 2 12 720 27127 720
o F 1, 1 1 (39)
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1= 1.1 1 (40)
% 1=+ = 22— =
27127 720
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gzﬂ_lz Ml (41)
am am
Ivastmee o tmesp g Lo Lo
. 12 1720l i 127 720 42)
1- A+ A -2
27 127 720
=0 Y IR ST
27 127 720 )
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2 12 720 27 127 720
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:e—lemiew—iaﬂ“
1 i 112 7120 1. 1 1 (44)
=MA+ =MV ——M A+ -2+ — 1"
2 12 720 27 12 720
SR S VPSUIE S IE TONE TV
720 720 720 12
(45)
1, 1., 1 1 1
O+ = AP MA-Z0A-=A1+60=0
12 12 2 2 2
= M*2*—01* — 1* —60M 22? + 6004> 46)
+6042 —360k A — 36064 — 3601 + 7200 =0
:>(M4—9—1)/14—(60M2—609—6O)/12
(47)
—(360M +3600 +360) 4 + 7200 =0
Substitute (41) into (47) to get
M —-a M -a
:[M“—(—WJ—lJl“—[GOMZ—60[—m]—60}12
a a
wi i (48)
M-a M-a
—[BGOM +360[—W] +360J/1 + 720[—W] =0
am am
This equation (47) is of the form;
alt+a,’+aA’+a,l+a, =0 (49)

a,=(M*-6-1); a,=0; a, =—(60M*—606—60)
a, =—(360M +3600 +360); a; = 7200 . To study the behavior of the equation in

the long-run, we extend period M as far as 100 to represent infinity. The modelling

equations were derived in Appendix A and are based on 5% rate of interest. The
solution to the modelling equations in in table 1 are presented in Appendix B.

Discussion of Results

The modelling equations (Appendix A) present a rigorous empirical description
where the growth of an insurance fund over time is described by a polynomial of high
degree capturing complex investment dynamics. This is because insurer’s financial
systems can be characterised by a non-linear and chaotic manner, such that small
changes in the underlying variables or initial conditions could lead to oscillatory
behavior. This occurs where interest rates are influenced by a combination of factors
which interact in a non-linear manner. When this evolves, the force of interest will

78



Higher order Polynomial Technique of Measuring Interest Rate Intensity: A Bridge Between Life
Insurance Valuation and Investment

not assume a simple monotone pattern but instead may exhibit oscillations as a
reflection of the underlying complexity. The modelling equations obtained represent
an investment environment where different forces both speculative (complex) and
real interact to produce equilibrium. Obviously In table 1 (Appendix B), it is
interesting to observe that the real rates in root 1, and the real parts of the complex
rates in both root2, root3, add up to root4, in absolute values that is,
rootl+ real part of root2+ real part of root3 =root4 while the sum of the

imaginary rates frizzle out. The real part represents actual economic factors while the
complex parts represent the speculative influences. The real roots are the observed
values such as stable interest rates or growth factors in the economic modelling
equations. However, the complex roots which conjugate each other define some more
theoretical factors such as periodic investment conditions that may not have a straight
forward market equivalence but still impact the financial system.

The zeroes obtained evolve from solving the underlying fourth-degree equation
governing the interest rate intensities over a 100-year investment horizon. The rows
correspond to an investment period M =k, with four zeroes of the modelling
equations but the resulting limiting value of interest rate intensities is in the last
column of the table. The behavior of these roots over time reflects the evolving
dynamics of the insurer’s financial system being modelled. Root 1 displays an
interesting metamorphosis across the investment horizon. At M =1, the intensity is
a negative real number, representing an initially loss-driven or unfavorable driven
investment condition. From M =2 to M =51, the interest rate (root 1) becomes
positive real number, and suggests a shift into a favorable investment condition in a
period of real and stable growth. However, from M =52 ,upwards, root 1 becomes
negative complex numbers, indicating the commencement of oscillatory behavior
with a damping effect. Consequently, this transition may result in long-run instability
or changing market dynamics, possibly associated with policy changes or
macroeconomic factors governing the investment at the long run.

Root 2 commences as a positive complex number at M =1, which suggests initial
volatility with growth potential-characteristic of speculative or emerging investment
conditions. However, from M =2, to M =100, root 2 becomes negative complex
number. This adverse shift indicates there is an auxiliary component of the financial
system describing an economic drag and causing continuous cyclical decline. The
economic drag may have evolved due to the systemic risks, market inefficiencies.
Consequently, these impact negatively to the interest rate intensity throughout the
investment period.
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Root 3 resembles varying market movement. It starts as a positive complex number
at M =1, similar to root 2, indicating early volatility. However, it progressively
shifts to a negative complex number between M =2 and M =51 representing an
extended period of decline governed by cyclical behavior. Interestingly, from
M =52 to M =100, root 3 becomes a positive real number. This suggests a
component within the financial system, after a period of instability, which transforms
into a stable level of positive growth, possibly a maturing investment that seems to
admit long-term value structural adjustment. Root 4 remains real and positive
throughout the entire 100-year period. Its consistent positive values admit that it is
the dominant intensity in the system, suggesting a stable and reliable driver of the
interest rates. This root may likely reinforce the crucial strength of the investment
modelling equations, probably a basic economic factor or policy mechanism, which
ensures continuity and long-term stability.

The final column, defining the limiting value of the force of interest, represent a slow
but steady convergence towards approximately 5% annually. Although it initially fell
slightly below this mark, the values grow upward as M increases, indicating a level
of diminishing effect of the volatile or complex roots. Across time, the interest rate
intensities stabilise in line with the behavior of root 4. This convergence indicates
that in spite of short-term volatility and mid-term complexity, the investment
environment being modelled, attains a stable and predictable level at the long run.
The modelling equations is a replica of an investment environment associated with
instability or possible losses, transits through a period of recovery and growth,
encounters speculative cyclical influences and finally settles into long-term
equilibrium. The interest rate convergence to a stable 5% is a proof of the insurer’s
system's resilience and the dominance of sustained growth factors over time. This
manner of behavior characterises long-term financial instruments such as pensions or
annuities where early volatility gives way to stable, compounding growth over long
period of time. In view of Stehlik et al. (2024), during times of negative interest rates
or unusual market conditions, the force of interest may be represented as a negative
and or a complex number.

Figure 1 column 4 and 5 (Appendix C) compares the estimated interest rate intensity
with the limiting value. The limiting values of the interest rate intensity may not be
obtainable in investment because its trajectory defines a straight line. In Figure 1,
both the trajectory of the limiting value and the trajectory of the estimated value
intersect within 20 <M <40 called the equilibrium interval. In figure 1, the
trajectory of the estimated force of interest is a curve indicating that the rate of interest
is changing continuously over time. The curvature provides insights into how the rate
of interest evolves whether it is accelerating or decelerating. Obviously, the interest
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rate intensity is increasing over time. This means that the rate of interest is getting
higher as time increases. The implication is that as the force of interest increases, the
growth of the investment or accumulation of value will accelerate because the rate at
which interest is being applied is rising. This defines a condition where the market
interest rate is rises steadily over time or a condition where demand for a particular
asset increases over time causing interest rates to rise. The smooth curvature
demonstrates that the model equations are robust to capture variations in the market.

Consequently, the curve of the limiting interest rate intensity within 0 <M <5 s
downward-sloping representing a decreasing interest over time. This suggests that the
interest rate is becoming lower as time progresses. As the force of interest decreases,
the growth of the investment will slow down since the rate at which interest is added
to the investment is reducing. This might occur in a situation where inflation is
expected to decrease or where Central Bank reduces interest rates over time. As
M >5, the curve becomes a straight line. The force of interest is changing at a
constant rate indicating that it is either linearly increasing or decreasing over time.
The interest rate is either rising or falling at a consistent rate causing the investment's
growth to follow a predictable pattern.

Hoang (2015) constructed the following ruin probabilities under constant interest rate
intensity
A

3
Uﬂ<5>=“6“+ﬂIe“ds—S(f>e”f=“eﬂ“’{e J‘S(é‘)e”(So)

where U, (&) is the surplus up till time &, 7 the premium rate, S (&)

Il
]
<

=

the aggregate claim, M (&)= Sup{m|T, <&} is the number of claims, T, = iék

k=1
is the time of the mth claimand U, (0) = U but there was not any analytic evidence

that the author developed any analytic model for the force of interest and hence
assumed 4 =0.1

Under some investment conditions, interest rates or the forces driving interest
rate changes may be subject to periodic fluctuations as a result of the recurring
investment conditions, such as the speculative rise and fall of economic activity in a
market economy, including expansion and contraction phases. These cycles can result
in oscillating interest rates as the Central Bank modifies its policies in response to the
subsisting economic environments. Inflation rates may rise or fall periodically,
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impacting the interest rates. However, deflationary pressures may lead to oscillations
in the effective rate of interest. Central banks often adjust interest rates in response to
economic conditions, intending to contain inflation, manage unemployment or
stimulate growth. These rate adjustments may not be steady as they could occur in a
more stepwise or oscillatory manner in response to changing economic conditions. If
a Central Bank’s policy involves periodic interventions, such as adjusting interest
rates every periodically in connection to a particular economic problem, the interest
rate intensities may be characterised by oscillations.

Investors may react to the perceived changes in risk, socio-political contingencies or
other market shocks. As a result, the investment markets are not only driven by the
forces of supply and demand but also by the speculative investor’s sentiment and
behavioral responses. This may result in oscillations in the effective interest rates as
the market adjusts expectations about future growth, inflation or risk.

External shocks, such as socio-political events, or sudden economic crises, may cause
volatility in interest rates in the interim. If these shocks occur periodically or in a
manner which impacts the economy cyclically, they may cause the force of interest
to oscillate. When there are periods of high investment or borrowing demand, interest
rates may rise and if demand declines, interest rates might fall. Consequently, if this
demand fluctuates with some level of regularity such as seasonal demand for capital
or cyclical shifts in investment patterns, the force of interest could exhibit oscillations.
Investors’ expectations about future interest rates or economic conditions can cause
oscillations in the interest rate intensities. If investors anticipate future bearish or
bullish investment conditions, their expectations can lead to oscillatory changes in
short-term interest rates, which in turn influence the force of interest. Behavioral
factors such as herd’s behavior can introduce oscillations in financial markets. Herd-
behaviour suggests that investors tend to imitate the financial behaviour of the
majority of the herd. Herding is widely acknowledged in the investment market as
the reason behind dramatic rallies and sell-offs.

Conclusion

In conclusion, this study has explored the sensitivity of instantaneous interest rate in
comparison with its limiting functions. By analysing the sensitivity of these financial
instruments to variations in instantaneous interest rates, the study provides valuable
insights into the potential risks and opportunities for life insurers, investors and
actuarial scientists. The results suggest that a deeper understanding of instantaneous
interest rate movements is essential for the valuation of annuity pricing and
accumulation strategies especially in volatile or uncertain financial climates.
Moreover, the study emphasises the need for improved models that account for such
sensitivities in order to enhance the robustness of financial planning and investment
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decision-making. Future research may focus on refining these models to incorporate
more dynamic components, such as time-varying interest rate volatilities and
alternative financial assumptions, to capture the complexities of the financial markets
so that insurance practitioners can align their strategies within the evolving economic
frameworks, ensuring more accurate pricing, risk management and investment
outcomes.
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APPENDIX A
51" —3004° +738004-3600=0; M =1

14921* —1754612 —1107221+5444=0; M =2

79901* —473904° —1476591+7317=0; M =3
25487 1% —892321° 1846101 +9219=0; M =4
623851 —1430714% — 2215754 +11151=0; M =5
1294821* — 20890712 — 2585561 +13112=0; M =6
2399794 — 28674217 — 2955511 +15101=0; M =7
4094761* —3765731% —3325604 +17120=0; M =8
6559731° —4784031% —3695841+19167=0; M =9
9998704 —5922301% — 4066224 +21243=0; M =10
14639681 —7180544° — 4436744 +23348=0; M =11
20734651 —8558774° — 4807414 +25481=0; M =12
28559621" —10056961% —5178211 +27643=0; M =13
38414591° —11675144> —5549161 +29832=0; M =14
50623551* —13413291% —5920254 +32050 =0; M =15
65534524 —15271424% — 6291474 +34295=0; M =16
83519491° —17249531% — 6662841 +36568 =0; M =17
104974461 —19347611% — 7034341 +38868=0; M =18
130319431* — 2156567 4% — 7405981 + 41195=0; M =19

159998401* — 23903714 — 7777754+ 43549=0; M =20
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(A1)
(A2)
(A3)
(A4)
(AS5)
(A6)
(AT)
(A8)
(A9)
(A10)
(A1)
(A12)
(A13)
(A14)
(A15)
(A16)
(A17)
(A18)
(A19)

(A20)
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194479361" — 26361721% —8149651 +45930=0; M =21 (A21)
234254331" —28939721% —8521691 +48337=0; M =22 (A22)
279839291 —31637691% —8893851 +50771=0; M =23 (A23)
331774261 —34455641% — 9266151 +53230=0; M =24 (A24)
390623231 —37393574% — 9638574 +55714=0; M =25 (A25)

456974191* — 404514812 10011124 +58224=0; M =26 (A26)
531439164 — 43629371 ~10383801 + 60759=0; M =27 (A27)
614654121" — 46927234% —~10756601 + 63319=0; M =28 (A28)
707279081* —50345084% —11129524 +65903=0; M =29 (A29)
809998051 * —53882911% —1150256.1 + 68511=0; M =30 (A30)
923519014* — 575407142 —11875711 + 71143=0; M =31 (A31)
1048573984 — 613185047 —12248991 +73798=0; M =32  (A32)
1185918944 — 6521627 4% —12622381+ 76476 =0; M =33  (A33)
1336333904 — 692340247 —~12995894 +79177=0; M =34  (A34)
1500622861* — 733717547 —13369501 +81901=0; M =35  (A35)
1679613821° — 77629461 —~13743231+84646=0; M =36  (A36)
1874158794* —82007164? 14117074 +87413=0; M =37  (A37)
2085133751 —865048317 14491014 +90202=0; M =38  (A38)
2313438711 —91122491% —14865061+93011=0; M =39  (A39)
2559997671 —95860131% —15239211 +95841=0; M =40  (A40)

2825758631 —100717764° —15613461+98691=0; M =41 (A41)
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3111693591* —10569537.12 —15987814 +101562 =0:
341879855.1* —11079296.1% —1636226 1 +104451 =0;
3748093511* —116010534% —16736801 +107360 =0;
410062247 4% —1213480942 —1711144 4 +110288 =0;
4477453431% —126805641% —17486174 +113234=0;
4879678391* —1323831742 —17860991 +116198 = 0;
530841334 1% —1380806812 —18235901 +119180 =0;
5764798301* —143898184% —1861090.4 +122180 =0;
6249997261* —14983567.12 —18985981 +125196 = 0;
6765198221* —15589344 1% —19361151 +128229 =0;
7311613184* 1620706042 —19736391 +131279 =0;
7890478134* —1683680542 — 20111724 +134344 =0;
8503053091* —17478548,1% — 20487121 +137425=0:
9150622054 —1813229012 — 20862604 +140521=0;
9834493014* —187980311% — 21238161 +143632 =0;
1055599796 1% —194757704% — 21613794 +146757 =0
11316492921* — 2016550942 — 21989491 +149897 =0;
1211735787 1% — 20867246 1% — 22365251 +153051 =0
12959996831 — 2158098212 — 22741094 +156218 =0;

13845837794 —223067174° — 23116991 +159398 = 0;
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M =42

M =43

M =44

M =45

M =46

M =47

M =48

M =49

M =50

M =51

M =52

M =53

M =54

M =55

M =56

M =57

M =58

M =59

M =60

M =61

(A42)
(A43)
(A44)
(A45)
(A46)
(A47)
(A48)
(A49)
(A50)
(A51)
(A52)
(A53)
(A54)
(A55)
(A56)
(A57)
(A58)
(A59)
(A60)

(AB1)
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14776332741* — 2304445112 — 23492961 +162591=0; M =62 (A62)
15752957701 —237941844% — 23868991 +165797 =0; M =63 (AB3)
16777212651 —245559151% — 24245084 +169015=0; M =64 (A64)
17850621611" — 253296461 — 24621231 +172245=0; M =65 (AB5)
18974732561% — 261153761% — 24997431 +175487=0; M =66 (A66)
20151117524* — 2691310542 — 25373701 +178740=0; M =67 (AB7)
21381372471% —277228334% — 25750021 +182004=0; M =68 (AB8)
22667117431" —285445601° — 26126394 +185279=0; M =69 (A69)
24009996381* — 29378286.1% — 26502821 +188564=0; M =70 (A70)
25411677344% —302240124% — 26879304 +191859 =0; M =71 (A71)
26873852294 —310817364% — 27255821 +195164=0; M =72 (A72)
28398237244 —319514601° — 27632404 +198479=0; M =73 (A73)
29986572201* —328331831% — 28009021 + 201803=0; M =74 (A74)
31640621154* —337269051% — 28385681 + 205137 =0; M =75 (A75)
33362172104" —346326274% — 28762391 +208479=0; M =76 (A76)
35153037064" —355503484° — 29139154 +211830=0; M =77 (A77)
37015052011* —364800684% — 29515944 + 215189=0; M =78 (A78)
38950076964* —374217874% — 29892781 + 218556 =0; M =79 (A79)
4095999592 1* —383755061% —30269654 +221931=0; M =80 (A80)
4304671687 1% —39341224 12 —3064657 1 +225313=0; M =81 (A81)

45212171821* —403189411% —31023521 +228703=0; M =82 (A82)
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47458316781" —413086581° —31400504 +232100=0; M =83 (A83)
49787131731% —423103751% — 31777524+ 225504=0; M =84 (A84)
52200620681° — 433240901 —32154581 +238915=0; M =85 (A85)
54700811631* — 443498061 —32531664 +242333=0; M =86 (A86)
57289756594" — 453875201 — 32908784 + 245756 =0; M =87 (A87)
59969531541" — 464372344 — 33285931 + 249186=0; M =88 (A88)
62742236491" — 474989481 —33663111 +252622 =0; M =89 (A89)
6560999544 1" — 485726611° — 34040321 + 256064 =0; M =90 (A90)
68574956401" —496583744° —34417554 +259511=0; M =91 (A91)
71639291351° —507560861% — 34794821 + 262963=0; M =92 (A92)
74805196301 —518657981° —35172111 +266421=0; M =93 (A93)
78074891251* —529875104% — 35549421 + 269884=0; M =94 (A94)
814506201 —541212211% —35926761+273352=0; M =95  (A95)
84934651161* —552669311° —36304121 +276824=0; M =96 (A96)
88529276111 —564246421° —36681511+280301=0; M =97 (A97)
92236811061* —575943514° —37058911 +283783=0; M =98 (A98)
96059596011 —587760611° —37436341+287269=0; M =99 (A99)

9999999496 1* —599697701% — 37813794 + 290759 =0; M =100 (A100)

The limiting value of the force of interest is given by

1

i(m) N
o _{(1+ iy _1} (A101)
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APPENDIX B

Presentation of Results
Table 1: Interest Rate Intensity from Model Equations

Volume 3 Issue 2, December 2025

ROOT 1 ROOT 2 ROOT 3 ROOT 4 LIMIT
-25.3601 12.6557+20.5362000i 12.6557-20.5362000i  0.0487902 0.050000
5.11237 -2.58058+2.8228900i -2.58058-2.8228900i  0.048791 0.0493902
3.36729 -1.70804+1.6299500i -1.70804-1.6299500i  0.0487897 0.0491891
2.51479 -1.28179+1.1424400i -1.28179-1.1424400i  0.048788 0.0490889
2.00506 -1.02693+0.8789500i -1.02693-0.8789500i  0.0487906 0.049029
1.66599 -0.85739+0.7146060i -0.85739-0.7146060i  0.0487918 0.0489891
1.42427 -0.73653+0.6025580i -0.73653-0.6025580i  0.0487895 0.0489606
1.24331 -0.646051+0.521380i -0.646051-0.521380i  0.0487908 0.0489392
1.1028 -0.575795+0.459905i -0.575795-0.459905i  0.0487897 0.0489227
0.990558 -0.519674+0.411761i -0.519674-0.411761i  0.0487896 0.0489094
0.898841 -0.473816+0.373047i -0.473816-0.373047i  0.0487903 0.0488985
0.822497 -0.435643+0.341247i 0.435643-0.3412470i  0.04879 0.0488895
0.757959 -0.403375+0.314665i -0.403375-0.314665i  0.0487911 0.0488818
0.702688 -0.375739+0.292115i -0.375739-0.292115i  0.0487903 0.0488753
0.65482 -0.351806+0.272747i -0.351806-0.272747i  0.0487911 0.0488696
0.612961 -0.330876+0.255932i -0.330876-0.255932i  0.048791 0.0488646
0.576045 -0.312418+0.241197i -0.312418-0.241197i  0.0487914 0.0488602
0.543243 -0.296017+0.228178i -0.296017-0.228178i  0.0487915 0.0488563
0.513904 -0.281348+0.216593i -0.281348-0.216593i  0.0487915 0.0488529
0.487506 -0.268149+0.206216i -0.268149-0.206216i  0.0487918 0.0488497
0.463625 -0.256209+0.196869i -0.256209-0.196869i  0.0487926 0.0488469
0.441919 -0.245356+0.188404i -0.245356-0.188404i  0.048793 0.0488443
0.4221 -0.235447+0.180703i -0.235447-0.180703i  0.0487944 0.048842
0.403933 -0.226364+0.173666i; -0.226364-0.173666i  0.0487951 0.0488398
0.387219 -0.218007+0.167210i -0.218007-0.167210i  0.0487956 0.0488378
0.371789 -0.210293+0.161266i -0.210293-0.161266i  0.0487968 0.048836
0.357499 -0.203149+0.155776i -0.203149-0.155776i  0.0487982 0.0488343
0.344228 -0.196514+0.150690i -0.196514-0.150690i  0.0488 0.0488327
0.331868 -0.190335+0.145963i -0.190335-0.145963i  0.0488017 0.0488312
0.320329 -0.184567+0.141559i -0.184567-0.141559i  0.0488037 0.0488299
0.309531 -0.179169+0.137446i -0.179169-0.137446i  0.048806 0.0488286
0.299404 -0.174106+0.133595i -0.174106-0.133595i  0.0488084 0.0488274
0.289887 -0.169349+0.129983i -0.169349-0.129983i  0.0488111 0.0488262
0.280926 -0.16487+0.1265870i -0.16487-0.1265870i  0.0488142 0.0488252
0.272472 -0.160645+0.123388i -0.160645-0.123388i  0.0488181 0.0488242
0.264483 -0.156652+0.120370i -0.156652-0.120370i  0.0488217 0.0488232
0.256922 -0.152874+0.117517i -0.152874-0.117517i  0.0488259 0.0488223
0.249755 -0.149293+0.114816i -0.149293-0.114816i  0.0488309 0.0488215
0.24295 -0.145893+0.112255i -0.145893-0.112255i  0.0488358 0.0488207
0.236481 -0.142661+0.109824i -0.142661-0.109824i  0.0488414 0.0488199
0.230323 -0.139585+0.107512i -0.139585-0.107512i  0.0488475 0.0488192
0.224454 -0.136654+0.105311i -0.136654-0.105311i  0.0488545 0.0488185
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0.218853
0.213502

0.208384

0.203484

0.198788

0.194282

0.189956

0.185798

0.181798

-0.113454+0.0879587i
-0.111606+0.0865817i
-0.109826+0.0852551i
-0.108108+0.0839761i
-0.10645+0.08274200i
-0.104849+0.0815505i
-0.103302+0.0803993i
-0.101805+0.0792864i
-0.100357+0.0782097i
-.0989553+0.0771675i
-0.097597+0.07615800i
-0.0962806+0.0751798i
-0.0950038+0.0742313i
-0.0937651+0.0733111i
-0.0925625+0.0724179i
-0.0913946+0.0715505i
-0.0902597+0.0707077i
-0.0891565+0.0698885i
-0.0880836+0.0690918i
-0.0870396+0.0683166i
-0.0860235+0.0675621i
-0.0850341+0.0668275i
-0.0840703+0.0661118i
-0.0831312+0.0654143i
-0.0822156+0.0647343i
-0.0813227+0.0640712i
-0.0804516+0.0634242i
-0.0796016+0.0627928i
-0.0787718+0.0621763i
-0.0779615+0.0615742i
-0.07717+0.060986000i

-0.133857+0.103213i
-0.131186+0.101210i

-0.128631+0.0992967i

-0.126186+0.0974665i

-0.123842+0.0957141i

-0.121595+0.0940346i

-0.119438+0.0924233i

-0.117365+0.0908760i

-0.115372+0.0893890i

-0.113454-0.08795870i
-0.111606-0.08658170i
-0.109826-0.0852551i

-0.108108-0.0839761i

-0.10645-0.08274200i

-0.104849-0.0815505i

-0.103302-0.0803993i

-0.101805-0.0792864i

-0.100357-0.0782097i

-0.0989553-0.0771675i
-0.097597-0.07615800i
-0.0962806-0.0751798i
-0.0950038-0.0742313i
-0.0937651-0.0733111i
-0.0925625-0.0724179i
-0.0913946-0.0715505i
-0.0902597-0.0707077i
-0.0891565-0.0698885i
-0.0880836-0.0690918i
-0.0870396-0.0683166i
-0.0860235-0.0675621i
-0.0850341-0.0668275i
-0.0840703-0.0661118i
-0.0831312-0.0654143i
-0.0822156-0.0647343i
-0.0813227-0.0640712i
-0.0804516-0.0634242i
-0.0796016-0.0627928i
-0.0787718-0.0621763i
-0.0779615-0.0615742i
-0.07717-0.060986000i

-0.133857-0.103213i
-0.131186-0.101210i
-0.128631-
0.0992967i
-0.126186-
0.0974665i
-0.123842-
0.0957141i
-0.121595-
0.0940346i
-0.119438-
0.0924233i
-0.117365-
0.0908760i
-0.115372-
0.0893890i
0.177947
0.174237
0.170659
0.167206
0.163872
0.16065
0.157534
0.154518
0.151598
0.148768
0.146024
0.143362
0.140778
0.138268
0.135829
0.133456
0.131148
0.1289
0.126711
0.124578
0.122497
0.120467
0.118486
0.11655
0.114659
0.112809
0.110999
0.109228
0.107493
0.105793
0.104125
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0.0488615
0.0488695

0.0488781

0.0488874

0.0488973

0.0489081

0.04892

0.0489324

0.0489458

0.0489604
0.0489757
0.0489923
0.0490098
0.0490286
0.0490485
0.04907
0.0490928
0.0491169
0.0491425
0.0491697
0.0491987
0.0492294
0.0492619
0.0492965
0.049333
0.0493717
0.0494126
0.0494558
0.0495015
0.0495498
0.0496009
0.0496549
0.0497122
0.0497726
0.0498365
0.0499039
0.0499752
0.0500507
0.0501303
0.0502148

0.0488179
0.0488172

0.0488166

0.048816

0.0488155

0.048815

0.0488145

0.048814

0.0488135

0.0488131
0.0488126
0.0488122
0.0488118
0.0488114
0.0488111
0.0488107
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-0.0763966+0.0604111i  -0.0763966-0.0604111i  0.102489 0.0503042 0.0488045
-0.0756407+0.0598492i  -0.0756407-0.0598492i  0.100882 0.050399 0.0488043
-0.0749017+0.0592997i  -0.0749017-0.0592997i  0.0993039 0.0504994 0.0488042
-0.074179+0.05876230i  -0.074179-0.05876230i  0.0977518 0.0506061 0.048804
-0.0734719+0.0582364i  -0.0734719-0.0582364i  0.0962246 0.0507192 0.0488038
-0.0727801+0.0577217i  -0.0727801-0.0577217i  0.0947206 0.0508395 0.0488037
-0.0721029+0.0572178i  -0.0721029-0.0572178i  0.0932383 0.0509676 0.0488035
-0.07144+0.056724500i  -0.07144-0.056724500i  0.0917759 0.0511041 0.0488034
-0.0707909+0.0562412i  -0.0707909-0.0562412i  0.0903319 0.0512498 0.0488032
-0.070155+0.05576770i  -0.070155-0.05576770i  0.0889046 0.0514054 0.0488031
-0.069532+0.05530370i  -0.069532-0.05530370i  0.0874917 0.0515723 0.048803
-0.0689215+0.0548489i  -0.0689215-0.0548489i  0.0860915 0.0517516 0.0488028
-0.0683231+0.0544030i  -0.0683231-0.0544030i  0.0847017 0.0519446 0.0488027
-0.0677364+0.0539657i  -0.0677364-0.0539657i  0.0833199 0.0521529 0.0488026
-0.0671611+0.0535367i  -0.0671611-0.0535367i  0.0819433 0.0523789 0.0488024
-0.0665968+0.0531159i  -0.0665968-0.0531159i  0.0805685 0.0526251 0.0488023
-0.0660432+0.0527030i  -0.0660432-0.0527030i  0.079192 0.0528945 0.0488022
-0.0655+0.0522976000i  -0.0655-0.0522976000i  0.0778089 0.0531912 0.0488021

Appendix C

The Trajectories of Interest Rate Intensity and its Limiting Value
Interest Rate Intensity vs Period
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Figure 1: Comparison of Estimated intensity and limiting value
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