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Abstract

Accurate modeling of age-specific mortality is crucial for actuarial
applications, public health planning, and demographic forecasting.
Traditional parametric models, such as Gompertz and Makeham laws, often
fail to capture complex or nonlinear mortality patterns, particularly at early
and advanced ages. This study proposes a novel approach to mortality
modeling using non-square matrices generated from McCutcheon’s
polynomial, enabling flexible estimation of mortality rate intensities across
diverse age cohorts. Three polynomial-based models were developed and
applied to synthetic and empirical data to examine survival probabilities,
instantaneous death rates, and the force of mortality. The results
demonstrate that the non-square polynomial approach captures intricate
age-specific mortality dynamics, including local kinks and oscillations, while
providing smoother, more interpretable curves than conventional methods.
The models reveal key features such as minimal mortality points, constant-
force intervals, and accelerated mortality at senescent ages, offering
improved predictive accuracy and scalability. This framework provides a
robust tool for actuaries, demographers, and public health planners,
facilitating enhanced life insurance pricing, pension fund evaluation, and
demographic forecasting. The findings highlight the potential of extending
classical mortality models with polynomial matrices to accommodate
complex population dynamics and nonlinear mortality trends.
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Introduction

Recent evolution and robust product design innovations in the life
insurance market have continually drawn the attention of actuaries to
mortality as a tradable risk through mortality-linked insurance products.
This has heightened the need for accurate modelling and forecasting of
mortality rates. Analytical modelling of mortality trends is particularly
important due to its central role in life insurance underwriting, pension
scheme management, and the broader study of population dynamics (Li,
O'Hare, & Vahid, 2016).

Accurate mortality forecasting is essential for effective resource allocation
and forward planning in insurance and pension systems (Bolx-Postigo,
Aguero, & Melus-Moreno, 2019; Spreeuw, Owadally, & Kashif, 2022).
Inadequate mortality estimation contributes significantly to longevity risk,
which creates complex challenges in premium pricing, reserving, forward
funding, and retirement planning. Life tables summarise survival
probabilities and mortality experiences of a cohort and provide
instantaneous mortality rates and probabilities of death as functions of
age. These probabilities play a pivotal role in premium rating and
reserving decisions in life insurance.

However, crude mortality rates derived from cohort data are subject to
random fluctuations due to sampling variability. Consequently,
smoothing techniques are required to remove random errors associated
with observed mortality data. Life tables are therefore computationally
intensive to construct, particularly when estimating present values of
pension funds and insurance provisions (Ah-Khaliludin, Khalid, &
AbdRahman, 2019).

Mortality data often exhibit clustering of deaths at infancy and advanced
ages, while increasing steadily at intermediate ages. This characteristic
leads to pooling deaths into age intervals, resulting in abridged life tables.
Nevertheless, since deaths occur continuously, there is a growing need to
estimate single-age mortality intensities rather than interval-based rates.
Interpolation and smoothing techniques enable actuaries to derive
instantaneous mortality intensities from abridged data.



One of the most critical challenges in mortality modelling lies in
estimating mortality intensity functions, defined as the instantaneous
rate of mortality at a given age. Although the true mortality intensity
function is unknown, it can be approximated using observed mortality
data. However, discrepancies between observed and estimated mortality
rates may be substantial.

To address these challenges, previous studies have applied a range of
smoothing and interpolation techniques. Li, O'Hare, and Vahid (2016)
used Legendre polynomials, while Ah-Khaliludin et al. (2019) employed
Akima'’s interpolation technique, which uses piecewise cubic polynomials
to ensure smooth transitions across age intervals. Other non-parametric
approaches including kernel smoothing, B-splines, smooth splines,
isotonic regression, and wavelets have also been extensively discussed in
the literature (Faraway, 2016; Oirov, Terbish, & Dorj, 2021; Kaishev et al.,
2016).

While parametric mortality models are widely used, they impose
restrictive functional forms that may fail to capture complex or irregular
mortality patterns. The reliance on assumed distributions and expert
judgement introduces potential model misspecification, highlighting a
methodological gap in mortality intensity estimation.

McCutcheon’s polynomial has long been applied in actuarial science to
approximate age-specific mortality and survival functions. Extending this
approach through the use of non-square matrix representations offers a
flexible framework for modelling mortality intensity across varying age
groups, cohorts, and time periods, particularly when data dimensions are
unbalanced.

Objective

The objective of this paper is to develop and evaluate a flexible mortality
intensity modelling framework using McCutcheon’s polynomial and non-
square matrix representations to improve the estimation of age-specific
mortality rates.



Data and Methods

McCutcheon'’s polynomial is often used in the context of actuarial science
and mortality rate modeling, particularly when dealing with mortality
tables or cohort-based analysis. The application of a non-square matrix
generated from McCutcheon’s polynomial in modeling mortality rate
intensity is a more advanced topic that combines actuarial techniques
with matrix algebra for representing and solving mortality rate patterns.
McCutcheon’s polynomial is typically used to model the relationship
between the age of an individual and the probability of survival or
mortality rate. The polynomial gives a smooth curve that approximates
mortality or survival functions, often used in mortality tables. In many
mortality models, we approximate the mortality rate 4 _at age x with a

polynomial expression such as:
e = Py + Bx+ fox’ + fix’ + .4 fx°
(1)

where S are the coefficients, and k is the degree of the polynomial,

determining the complexity of the curve. A non-square matrix in this
context would generally be a matrix where the number of rows and
columns are not equal. Non-square matrices can arise in actuarial
modeling when we have a model involving multiple cohorts or different
periods, and the data structure doesn't necessarily align in a square form
(i.e., age groups or cohorts may differ in size, which results in matrices
that are not square). In mortality modeling, the use of a non-square
matrix might arise when the model requires tracking mortality rates over
multiple time periods (e.g., cohorts over years) or across multiple age
groups (i.e., not all age groups have the same number of data points).

This non-square matrix could represent coefficients, adjustments or even
rates for mortality intensities across varying parameters like age and
time. In this case, the non-square matrix could be used to represent the
coefficients or values of the polynomial (McCutcheon’s polynomial) across
different age cohorts and time periods. For example, we might use a
matrix to store mortality rates at different ages for different time periods
or different groups as follows.
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(1a)
where

M is a non-square matrix.

U, (fk) represents the mortality rate at age group mmm at time &,

n could represent a specific cohort, and &, could be a year.

This matrix can then be multiplied with the polynomial coefficients to
predict or adjust mortality intensities for each age group and time period.
Mortality intensity is defined as the instantaneous rate of mortality, often
represented by the force of mortality, ¢ which is related to survival and

mortality probabilities. In a McCutcheon’s polynomial model, you might
have:

k .
H = Zﬂjx’
=0
(1b)

If you apply this polynomial to the matrix A7 you are essentially fitting the
polynomial over the data points in the matrix to estimate the mortality
rate over time or across different age groups. By solving this system, you
can track the mortality rate over a specified range of ages or cohorts,
enabling predictions of future mortality or analysis of past trends.

Cohort-Specific Mortality Rates: If you have mortality rates for multiple
cohorts over time, the matrix could be used to track these rates, with the
non-square nature accommodating differences in the number of cohorts
and time periods. Dynamic Mortality Models: In more advanced actuarial
models, mortality rates can evolve over time. A non-square matrix could



be used to capture the changing nature of mortality rates across different
time periods and age groups.

Multivariate Mortality Analysis: In cases where multiple factors influence
mortality (e.g., socioeconomic status, lifestyle, geographic location), a
non-square matrix could

Mathematical Preliminaries

Let (x) denote alife aged x where x> 0. Since the death of (x)can occur
at any age y=>x, the future lifetime of (x)can be modelled by the
continuous complete future life time function 7 such that the true
function of the mortality intensity at age x is given

1
= lim —P[T, < Ax
M, lrl’le[)C ]

Ax—0+

O=x

x+& xe
D= exp{—L 1,0 }; exp{—Zug}

where | p, is the probability that individual (x) survives to age x+¢&

The problem of estimating death rate . at any given instant occurs most
often in mortality analysis. If [ defines the expected number of lives
surviving to age x and u_ is the instantaneous death rate, then it is
possible to evaluate the value of x numerically from the first order
ordinary differential equation described by
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:ux+§lx+§ - dé:

3)

where

Zx = _"ﬂx+§lx+§d§
0
(4)

Theorem

Let the random life time of a new born take value in the interval [0,%),
then

dF, (x)=PyxdH (x)+ f , (x)dx
(5)

where £, (x) is the defective death density.

Proof

Let x define the age of a life with x>0. The survival function [

represents the survival probability from age 0 to age x. Itis functionally
connected with the death density function f, (x) as follows:

dl
~fe¥) =4
(5a)
L= fy ()de=1=] £ (t)at
x 0
(5b)
and force of mortality is given by
_Jx (x)
X lx
(50)



forall x suchthat / >0
Observe that the distribution function of death F, (x)=0 for x<0 and
Fy(0)=P(X =0) for x>0
F(x)=P(X<x)=P(0<X <x)
(6)
P(0<X<x)=P(X=0)+P(0<X <x)
)

Assume that the distribution function F\ (x) is differentiable on (0,),

then there exists a defective death density function 7;( (x) x>0 such
that

Define the Heavy side function

H( )_ 1 if x>0
=0 i x<o0
9

Then for all xR, we observe that for P, =P(X =0)

(11)



dF, (x)=P, XdH()C)-i-_?X (x)dx
(12)
Hence the proof

Theorem

Let 7. be the random life time of a life aged x, then the curve of death
function /_u_ is given by

o Lt s =l [ fy () H ()
0 —o0
(13)

Proof

fo (T):(rpx)xluxw
(14)
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From equation (9), H(-s)=0

j £, (e) (e )z = 1im £, (5) o-ggg{j 1 (T)H(T)dﬁi 1 (T)H(T)df}

(20)
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(26)



replacing = by x in (26) and observe that [, =le+syx+sds in (4), we have
0

/le x le+sﬂx+sds = lo X _[ fTE) (x)H’(x)dx
0 —0
(26a)

Hence the proof

McCutcheon (1981-1983) defines the force of mortality as

n
_Z Cij Za+/
j=1

/JX ) la+i
i=12,3,..n
(27)
We can then expand (27) to have
qu — _|: QIla+l + Ci21a+2 ot Cin
la+i
(28)
Take
ifn=>5, i=3, then a=x-3
ifn=>5 i=2, thena=x-2
(29)
< 1
C, =
il ;|:xi _ xk :|
k#i
(30)

n must be greater than 2. n>3
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C, wherei=1, j=1, n=3,k#1

G, = 1 + l
X=X, X —X
(31)
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d 1
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Model 1

McCutcheon (1983) obtained the mortality matrix as

=25 48 36 16 -3
¢ =| -3 -10 18 -6 1
1 -8 0 & -1

(51
a=x-1
5
Mg = _Z Cijlx—l+ j
j=1
(52)
-1 5
Hoton1 =5 qulx—lﬂ'
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—1|-25 48 36 16 3
=22 2 -2 e -
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(54)
_l El _ﬁ +§ _E +i[
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Model 2
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a=x-2
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-1
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Presentation of Results

Table 1: (Model 1)

N L, M, Lu,
0 1000000 0.012232 12232
1 993887 0.000465 462
2 993467 0.000382 380
3 993126 0.000308 306
4 992853 0.000245 243
5 992634 0.000199 198
6 992454 0.000165 164
7 992300 0.000146 145
8 992162 0.000133 132
9 992034 0.000125 124
10 991910 0.000126 125
11 991782 0.000134 133
12 991640 0.000156 155
13 991469 0.000197 195
14 991248 0.000258 256
15 990948 0.000356 353
16 990535 0.000485 480
17 989983 0.000628 622
18 989281 0.000785 777
19 988440 0.000903 893
20 987498 0.000997 985
21 986499 0.001019 1005
22 985491 0.001021 1006
23 984501 0.000986 971
24 983553 0.000940 925
25 982657 0.000884 869
26 981816 0.000831 816
27 981023 0.000787 772
28 980265 0.000763 748
29 979528 0.000745 730
30 978799 0.000745 729
31 978063 0.000760 743
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Table 1: (Model 1) — Continued

§ L M, L,
32 977311 0.000781 763
33 976538 0.000799 780
34 975738 0.000842 822
35 974903 0.000869 847
36 974031 0.000922 898
37 973110 0.000971 945
38 972132 0.001043 1014
39 971079 0.001128 1095
40 969933 0.001238 1201
41 968671 0.001370 1327
42 967269 0.001534 1484
43 965699 0.001723 1664
44 963929 0.001954 1884
45 961922 0.002219 2135
46 959648 0.002515 2414
47 957087 0.002826 2705
48 954232 0.003149 3005
49 951081 0.003468 3298
50 947629 0.003811 3611
51 943856 0.004178 3943
52 939731 0.004590 4313
53 935209 0.005067 4739
54 930244 0.005587 5197
55 924796 0.006170 5706
56 918822 0.006795 6243
57 912283 0.007497 6839
58 905138 0.008232 7451
59 897351 0.009055 8126
60 888867 0.009956 8850
61 979619 0.010988 10764
62 869500 0.012200 10608
63 858355 0.013667 11731
64 845970 0.015482 13097
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Table 1: (Model 1) — Continued

R I, s Ly,
65 932083 0.017708 16505
66 816413 0.020403 16657
67 798694 0.023561 18818
69 756335 0.031238 23626
70 731511 0.035568 26018
71 704285 0.040172 28293
72 674789 0.045416 30646
73 643346 0.050062 32207
74 610419 0.055076 33619
75 576168 0.060521 34870
76 540747 0.066514 35967
77 504283 0.073279 36953
78 466885 0.081019 37827
79 428691 0.089875 38529
80 389904 0.100002 38991
81 350812 0.111482 39109
82 311804 0.124459 38807
83 273364 0.138889 37967
84 236050 0.154856 36554
85 200433 0.172499 34574
86 167061 0.191962 32069
87 136432 0.213353 29108
88 108965 0.236552 25776
89 84962 0.261473 22215
90 64565 0.288082 18600
91 47742 0.316252 15099
92 34298 0.345861 11862
93 23903 0.377160 9015
94 16137 0.409272 6604
95 10540 0.443398 4673
% 6650 0.477882 3178
97 4048 0.514863 2084
98 2372 0.552522 1311
99 1335 0.595443 795
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Table 1: (Model 1) — Continued

R I, s Ly,
100 719 0.637228 458
101 370 0.684459 253
102 181 0.738029 134
103 84 0.767857 64
104 37 0.882883 33

105 15 0.794444 12

106 6 1.250000 8

107 2 0.083333 0

108 1 2.083333 2

Figure 1a: Survival Curve
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Fig 1b: mortality Curve
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Fig 1c: Curve of death
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Fig 1d: Surface plots
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Table 2: (Model 2)

x I, Ly Lu,
0 1000000 0.00188 1875
1 993887 0.00038 379
2 993467 0.00031 305
3 993126 0.00025 243
4 992853 0.0002 198
5 992634 0.00017 165
6 992454 0.00015 145
7 992300 0.00013 132
8 992162 0.00013 125
9 992034 0.00013 125
10 991910 0.00013 133
11 991782 0.00016 154
12 991640 0.00019 191
13 991469 0.00026 254
14 991248 0.00035 351
15 990948 0.00048 479
16 990535 0.00063 627
17 989983 0.00079 778
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Table 2: (Model 2) - Continued

x I, Ly Lu,
18 989281 0.00091 899
19 988440 0.00099 982
20 987498 0.00102 1009
21 986499 0.00102 1005
22 985491 0.00099 973
23 984501 0.00094 924
24 983553 0.00088 868
25 982657 0.00083 816
26 981816 0.00079 774
27 981023 0.00076 747
28 980265 0.00075 730
29 979528 0.00075 731
30 978799 0.00076 744
31 978063 0.00078 762
32 977311 0.0008 786
33 976538 0.00084 818
34 975738 0.00087 852
35 974903 0.00092 897
36 974031 0.00097 948
37 973110 0.00104 1014
38 972132 0.00113 1097
39 971079 0.00124 1202
40 969933 0.00137 1330
41 968671 0.00153 1483
42 967269 0.00172 1666
43 965699 0.00195 1886
44 963929 0.00222 2141
45 961922 0.00252 2422
46 959648 0.00283 2715
47 957087 0.00315 3012
48 954232 0.00347 3310
49 951081 0.00381 3622
50 947629 0.00418 3957

25



Table 2: (Model 2) — Continued

x I, Ly Lu,
51 943856 0.00459 4334
52 939731 0.00507 4760
53 935209 0.00559 5227
54 930244 0.00617 5739
55 924796 0.0068 6290
56 918822 0.0075 6887
57 912283 0.00824 7516
58 905138 0.00906 8198
59 897351 0.00996 8937
60 888867 0.01099 9764
61 979619 0.01219 11943
62 869500 0.01366 11875
63 858355 0.01547 13280
64 845970 0.0177 14975
65 932083 0.0204 19013
66 816413 0.02356 19236
67 798694 0.02718 21708
68 778714 0.03121 24300
69 756335 0.03559 26914
70 731511 0.04033 29501
71 704285 0.04531 31908
72 674789 0.05007 33787
73 643346 0.05507 35430
74 610419 0.0605 36931
75 576168 0.0665 38313
76 540747 0.07327 39621
77 504283 0.08101 40852
78 466885 0.08988 41963
79 428691 0.10002 42876
80 389904 0.11153 43484
81 350812 0.12449 43672
82 311804 0.13891 43314
83 273364 0.15489 42341

26



Table 2: (Model 2) - Continued

x I, Ly Lu,
84 236050 0.17255 40730
85 200433 0.19203 38488
86 167061 0.21338 35647
87 136432 0.23653 32270
88 108965 0.26139 28482
89 84962 0.28791 24461
90 64565 0.31599 20402
91 47742 0.34558 16499
92 34298 0.37669 12920
93 23903 0.40906 9778
94 16137 0.44297 7148
95 10540 0.47811 5039
9 6650 0.51517 3426
97 4048 0.55431 2244
98 2372 0.59694 1416
99 1335 0.64175 857
100 719 0.69054 496
101 370 0.74355 275
102 181 0.79464 144
103 84 0.86937 73
104 37 0.91111 34
105 15 1.04167 16
106 6 0.83333 5

107 2 1.33333 3

108 1 - 0
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Figure 2a: Survival function
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Figure 2c: Density function
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Table 3: (Model 3)

x I, H, Lu,
0 1000000 - 100000
1 993887 0.000310 308
2 993467 0.000250 248
3 993126 0.000200 199
4 992853 0.000170 169
5 992634 0.000150 149
6 992454 0.000130 129
7 992300 0.000130 129
8 992162 0.000130 129
9 992034 0.000130 129
10 991910 0.000150 149
11 991782 0.000190 188
12 991640 0.000260 258
13 991469 0.000350 347
14 991248 0.000480 476
15 990948 0.000630 624
16 990535 0.000780 773
17 989983 0.000910 901
18 989281 0.000990 979
19 988440 0.001020 1008
20 987498 0.001020 1007
21 986499 0.000990 977
22 985491 0.000940 926
23 984501 0.000880 866
24 983553 0.000830 816
25 982657 0.000790 776
26 981816 0.000760 746
27 981023 0.000750 736
28 980265 0.000750 735
29 979528 0.000760 744
30 978799 0.000780 763
31 978063 0.000800 782
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Table 3: (Model 3) - Continued

x [, Ly Ly,
32 977311 0.000840 821
33 976538 0.000870 850
34 975738 0.000920 898
35 974903 0.000970 946
36 974031 0.001040 1013
37 973110 0.001130 1100
38 972132 0.001240 1205
39 971079 0.001370 1330
40 969933 0.001530 1484
41 968671 0.001720 1666
42 967269 0.001950 1886
43 965699 0.002220 2144
44 963929 0.002520 2429
45 961922 0.002830 2722
46 959648 0.003150 3023
47 957087 0.003470 3321
48 954232 0.003810 3636
49 951081 0.004180 3976
50 947629 0.004590 4350
51 943856 0.005060 4776
52 939731 0.005590 5253
53 935209 0.006170 5770
54 930244 0.006800 6326
55 924796 0.007490 6927
56 918822 0.008240 7571
57 912283 0.009050 8256
58 905138 0.009960 9015
59 897351 0.010980 9853
60 888867 0.012190 10835
61 979619 0.013660 13382
62 869500 0.015470 13451
63 858355 0.017710 15201
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Table 3: (Model 3) — Continued

x [, Ly Ly,

64 845970 0.020400 17258
65 932083 0.023560 21960
66 816413 0.027180 22190
67 798694 0.031200 24919
68 778714 0.035600 27722
69 756335 0.040320 30495
70 731511 0.045250 33101
71 704285 0.050110 35292
72 674789 0.055070 37161
73 643346 0.060500 38922
74 610419 0.066500 40593
75 576168 0.073280 42222
76 540747 0.081010 43806
77 504283 0.089880 45325
78 466885 0.100010 46693
79 428691 0.111520 47808
80 389904 0.124470 48531
81 350812 0.138900 48728
82 311804 0.154880 48292
83 273364 0.172530 47163
84 236050 0.192010 45324
85 200433 0.213350 42762
86 167061 0.236520 39513
87 136432 0.261400 35663
88 108965 0.287940 31375
89 84962 0.316070 26854
90 64565 0.345710 22321
91 47742 0.376820 17990
92 34298 0.409290 14038
93 23903 0.443080 10591
94 16137 0.478330 7719

95 10540 0.515050 5429
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Table 3: (Model 3) - Continued

x [, Ly Ly,
9 6650 0.554140 3685
97 4048 0.595880 2412
98 2372 0.640820 1520
99 1335 0.687610 918
100 719 0.739410 532
101 370 0.790670 293
102 181 0.849100 154
103 84 0.922220 77
104 37 0.944440 35
105 15 1.041670 16
106 6 0.833330 5
107 2 - 2
108 1 - 1

Figure 3a: Survival function
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Figure 3b: Mortality function
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Fig 3¢: Density function
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Fig 3d: Surface Plots
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Discussion

In Tables 1 and 2, the force of mortality £, is clearly defined at
perinatality x =0 and consequently, the intensities x, can be captured.
In Figures 1, it is observed that x_displays a continuously smooth curve

but seems to cluster around the neighbourhood of age 105 suggesting
more deaths than elsewhere while the survival curves in Figures 1a, 2a,
3a exhibit kinks within the interval 60<x<70. Although, the survival
function in Figure 2a kinks within 60<x<70, the trajectory of the
mortality function increases continuously in figure 2. In tables 3, the
instantaneous death ratey is not defined at x=0 and hence the

intensities 1, cannot be captured. In this case, it is clear that the
estimation of x_ is by far a difficult problem where part of the difficulty is
the estimation of g, at initial age when the only information given is /.
The mortality at age zero , is defined in the Gompertz's law but the law
is not designed to measure mortality at age zero in practice as mortality
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cannot increase exponentially during infancy. In order to address the
problems connected with intractable 4, in equation (64) at age 0 in

Tables 3 and compare with Gompertz's law p_= BC*, the following close
form model are analytically developed.

! AZ " A3 m
A =ZO+AIO+71 +?lo+...

(66)
3
Q=Q+2Ag+mvm+#%q4m
(67)
We apply linear combination of /;,/,,1, which gives /;

Al,+ Bl +Cl, > I;(only) . Substitute the Taylor series expansion above
yields

2 3 3
Al, +B[lo +Al +%1"+%zg'+...j+c(zo +2Al; +2Azl(;’+4%l(;”+...j =1

(68)
We then extract the coefficients according of /; and its derivatives.
ly:A+B+C
Iy : BA+2CA

BA?

L +2CA’

BA* 4CA’
+
6 3
(69)
Now eliminate all terms except the one with /; and hence solve
A+B+C=0
BA+2CA=1

E+2C:O
2

m.
I

(70)
B
5+2C:0:>B:—4C

(71)
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(—4C)A+2CA=1:>C=—
2A

(72)
B:—4C:£
A
(73)
d=—p-c=2,L_3
A 2A 2A
(74)
-3 2 1
I!=Al +Bl +Cl, =—1] +—] ———1
0 0 1 2 2A 0 A 1 2A 2
(75)
1
Factor out —
2A
o1
lO:Z(—3ZO+4ZI—lz)
(76)
o= o - L (Capva )= (3, -0, +1,)
0 lO 2A 0 1 2 2Alo 0 1 2
(77)

The Gompertz's law is defined for the age interval 60<x<90 and
assumes exponential increase in age at senescence. Although real-life
mortality patterns in young age groups increase linearly due to external
factors such as accidents, life style, environmental influences and as a
result the classical Gompertz's and Makeham'’s laws which are dominated
by the exponential term do not capture these early-life mortality trends.
Of great concern in model-based mortality analysis is that the existing
methods such as in Putra, Fitriyati and Mahmudi (2019) and Muzaki,
Siswannah and Miasary (2020), the maximum likelihood estimation
method used to estimate the parameters of the classical Makeham's law
have exhibited clear limitations particularly in obtaining the ageing
parameter C to conform with the globally accepted critical interval 1.08
and 1.12. A major problem with maximum likelihood method is that two
parameters can influence the likelihood function which make the Jacobian
columns of the Jacobian matrix to be linearly independent and hence the
matrix becomes conditionally ill and hence the determinant is singular.
Consequently, the parameters cannot be estimated. In the Gompertz's
law, the hazard rate increases without bounds as the age x— .
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However, depending on the degree, the polynomial-based hazard can
increase, decrease or oscillate. The oscillation may be due to the Runge’s
phenomenon, a problem associated with polynomial based mortality
modelling when kinks occur.

In Figures 1 and 2, the mortality rates exhibit wavy kinks within
105<x <113 with a higher degree of complexity and increasing the
mortality risk of shocks or idiosyncrasies at advanced ages. The wavy
kinks in the curves functionally connected with a high risk of noise occurs
when using the polynomials associated with high-order dimensional non-
square mortality matrix to capture shocks rather than the true underlying
trend. Furthermore, the kinky points may have occurred as a result of the
Runge’'s Phenomenon associated with polynomial modelling. In Figures 1,
2 and 3, the mortality rates may be risky for extrapolation beyond
approved respective ranges 105<x <113 and 101<x <111 of mortality
data as they can behave erratically outside the fitted range. Moreover, the
modal age at death can be estimated as 80 years.

Consequently, the erratic behaviour of mortality rate associated with
shocks within the intervals 105<x <113 and 101 <x <111 are susceptible
to the following consequences: While polynomial-based mortality can be
used for extrapolation, there's a risk that the model derived may not
accurately predict long-term future mortality trends beyond the
approved age, especially when the mortality pattern changes over time
or in response to some health interventions such as medical
advancements and health policies. As a result, the models may not
capture shifts in trends caused by sudden changes in disease patterns or
demographic shifts, such as a significant aging population or major public
health crises. If polynomial is used for long-term mortality forecasting,
then there is a significant risk of uncertainty.

Mortality rates can change due to shifts in medical technology, lifestyle
changes and other external factors that the polynomial model may not
account for. Mortality models influence important underwriting
decisions, including resource allocation such as healthcare spending;
public health initiatives such as anti-smoking campaigns, vaccination
programs and retirement planning such as pension systems. If the model
overestimates or underestimates mortality rates, it could lead to
misallocation of resources. If the polynomial model fails to capture
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mortality changes due to new diseases or aging populations,
policymakers might fail to adequately prepare for future challenges.

Since p_ usually varies rapidly in the interval 0 <x <1, there may not be
any universally acceptable measure of x,. The mortality intensity u_

demonstrates a continuously smooth curve but it is observed to kink into
steps within 41<x <71. In Tables 1, there does not seem any age where
the mortality intensity x_ = u is constant. The implication is that at adult

ages, the risk of ageing will continuously escalate and any cause of death
will increase at higher degree of intensities such that more severe ageing
is caused as the force of mortality increases.

In both Tables 1 and 2, the intensities decline at age 23 <x <29 and then
steadily increases while in tables 3, the intensities decline at age
23 <x <33, thisresult is consistent with the stylized fact that x =10 is the
minimum point of mortality. However, p = u is constant within the

interval 8<x <9 and thereafter progressively increases till senescence.
In Table 3, although, the mortality intensity x_is not both defined at age

x=0, it becomes constant in the age interval 6 <x<9. In this interval,
this constant force of mortality can be observed from the survival

fo

Under this constant force assumption, the probability that a life survives
to age z+x within the age interval 6 <x <9 becomes independent of x
and consequently, the remaining lifetime approaches the negative
exponential distribution when the age attained increases. Since life
offices need a good estimates of mortality rates to price life annuities and
reverse mortgages, this may offer a conservative technique in valuating
life insurance schemes and life annuities.

probability_p, =e *" =e*.

It is clear from the results of the computation that mortality intensities
comparatively improve, best in Table3. This may be due to the flexibility
and scalability in model 3permitting the choice of the degree of
complexity in computing intensities and fitting the mortality curves with
a trade-off between information requirement and accuracy.
Consequently, as the subscripts i increases, the approximation obtained
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, ! , .
improves. Recall that iz = —li, consequently, in Table 1, the resistance to

P

1
mortality rate intensities at age x[] modal age defined by §=(—J=—%
decreases from 81.7528 at age 0 to 0.4800 at age 108. The trend
changes in table 2, as & decreases from 533.3333 at age 0 to 0.7500 at
age 107.In Table 3, & decreases from 3225.8065 at age 1 to 1.2000 at

age 106. The resistance which could be employed in measuring life

X

. . (d
expectancy at senescent ages would stabilize as hm(—éj =0

-Q\ dx

Conclusion

This study demonstrates the significant potential of employing a non-
square matrix generated from McCutcheon’s polynomial in modeling
mortality rate intensity. By leveraging the polynomial's flexibility in
capturing complex, age-specific mortality dynamics, the proposed model
improves both the accuracy and interpretability of mortality rate
predictions. The application of a non-square matrix allows for more
nuanced modeling of nonlinear and time-dependent effects, which
traditional square matrix approaches often overlook. Through case
studies and comparative analysis, it was shown that this method
enhances predictive power and provides a more adaptable framework for
diverse populations. The results emphasize the value of extending
classical demographic models and suggest that McCutcheon’s
polynomial, in its extended form, offers a promising tool for future
research in mortality modeling, with implications for actuarial science,
public health, and demographic forecasting. Further work can explore the
integration of additional demographic factors and the refinement of the
model to address specific population subsets and longitudinal data.

Applying polynomials in modeling mortality rates can be a useful
approach, particularly in cases where the mortality data exhibits complex
or non-linear patterns that are difficult to capture with simpler linear
models. Polynomials can provide flexibility in fitting the data, making
them a good tool for descriptive analysis and certain types of predictive
modeling. Using historical mortality data, a polynomial model can predict
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future mortality trends based on observed time patterns. For example, in
countries with aging populations, a polynomial model might capture the
acceleration of mortality in older age groups over time. Mortality rates
can change over time due to various factors, such as improvements in
healthcare, lifestyle changes, or the emergence of new diseases.

Polynomial models can be used to fit mortality trends as a function of
time, particularly when there are non-linear trends. Polynomials can also
be applied to model mortality rates in subgroups, such as by gender,
socioeconomic status, or geographic region. These subgroups may
exhibit different mortality trends, which polynomials can capture
effectively.

In this paper, we have given a detailed analysis of mortality modelling
based on McCutcheon’s mortality polynomial matrices to explain decline
in mortality. Three models were developed to that effect. All the three
models yield positive mortality intensities. However, decreasing trend is
observed beyond the age 10 and almost constant patterns were
observed within the interval indicated across the models.
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