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Abstract 

 

Accurate modeling of age-specific mortality is crucial for actuarial 

applications, public health planning, and demographic forecasting. 

Traditional parametric models, such as Gompertz and Makeham laws, often 

fail to capture complex or nonlinear mortality patterns, particularly at early 

and advanced ages. This study proposes a novel approach to mortality 

modeling using non-square matrices generated from McCutcheon’s 

polynomial, enabling flexible estimation of mortality rate intensities across 

diverse age cohorts. Three polynomial-based models were developed and 

applied to synthetic and empirical data to examine survival probabilities, 

instantaneous death rates, and the force of mortality. The results 

demonstrate that the non-square polynomial approach captures intricate 

age-specific mortality dynamics, including local kinks and oscillations, while 

providing smoother, more interpretable curves than conventional methods. 

The models reveal key features such as minimal mortality points, constant-

force intervals, and accelerated mortality at senescent ages, offering 

improved predictive accuracy and scalability. This framework provides a 

robust tool for actuaries, demographers, and public health planners, 

facilitating enhanced life insurance pricing, pension fund evaluation, and 

demographic forecasting. The findings highlight the potential of extending 

classical mortality models with polynomial matrices to accommodate 

complex population dynamics and nonlinear mortality trends. 
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Introduction 

Recent evolution and robust product design innovations in the life 

insurance market have continually drawn the attention of actuaries to 

mortality as a tradable risk through mortality-linked insurance products. 

This has heightened the need for accurate modelling and forecasting of 

mortality rates. Analytical modelling of mortality trends is particularly 

important due to its central role in life insurance underwriting, pension 

scheme management, and the broader study of population dynamics (Li, 

O’Hare, & Vahid, 2016). 

 

Accurate mortality forecasting is essential for effective resource allocation 

and forward planning in insurance and pension systems (Bolx-Postigo, 

Aguero, & Melus-Moreno, 2019; Spreeuw, Owadally, & Kashif, 2022). 

Inadequate mortality estimation contributes significantly to longevity risk, 

which creates complex challenges in premium pricing, reserving, forward 

funding, and retirement planning. Life tables summarise survival 

probabilities and mortality experiences of a cohort and provide 

instantaneous mortality rates and probabilities of death as functions of 

age. These probabilities play a pivotal role in premium rating and 

reserving decisions in life insurance. 

 

However, crude mortality rates derived from cohort data are subject to 

random fluctuations due to sampling variability. Consequently, 

smoothing techniques are required to remove random errors associated 

with observed mortality data. Life tables are therefore computationally 

intensive to construct, particularly when estimating present values of 

pension funds and insurance provisions (Ah-Khaliludin, Khalid, & 

AbdRahman, 2019). 

 

Mortality data often exhibit clustering of deaths at infancy and advanced 

ages, while increasing steadily at intermediate ages. This characteristic 

leads to pooling deaths into age intervals, resulting in abridged life tables. 

Nevertheless, since deaths occur continuously, there is a growing need to 

estimate single-age mortality intensities rather than interval-based rates. 

Interpolation and smoothing techniques enable actuaries to derive 

instantaneous mortality intensities from abridged data. 
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One of the most critical challenges in mortality modelling lies in 

estimating mortality intensity functions, defined as the instantaneous 

rate of mortality at a given age. Although the true mortality intensity 

function is unknown, it can be approximated using observed mortality 

data. However, discrepancies between observed and estimated mortality 

rates may be substantial. 

 

To address these challenges, previous studies have applied a range of 

smoothing and interpolation techniques. Li, O’Hare, and Vahid (2016) 

used Legendre polynomials, while Ah-Khaliludin et al. (2019) employed 

Akima’s interpolation technique, which uses piecewise cubic polynomials 

to ensure smooth transitions across age intervals. Other non-parametric 

approaches including kernel smoothing, B-splines, smooth splines, 

isotonic regression, and wavelets have also been extensively discussed in 

the literature (Faraway, 2016; Oirov, Terbish, & Dorj, 2021; Kaishev et al., 

2016). 

 

While parametric mortality models are widely used, they impose 

restrictive functional forms that may fail to capture complex or irregular 

mortality patterns. The reliance on assumed distributions and expert 

judgement introduces potential model misspecification, highlighting a 

methodological gap in mortality intensity estimation. 

 

McCutcheon’s polynomial has long been applied in actuarial science to 

approximate age-specific mortality and survival functions. Extending this 

approach through the use of non-square matrix representations offers a 

flexible framework for modelling mortality intensity across varying age 

groups, cohorts, and time periods, particularly when data dimensions are 

unbalanced. 

 

Objective 

 

The objective of this paper is to develop and evaluate a flexible mortality 

intensity modelling framework using McCutcheon’s polynomial and non-

square matrix representations to improve the estimation of age-specific 

mortality rates. 

  



 

4 
 

Data and Methods 

 

McCutcheon’s polynomial is often used in the context of actuarial science 

and mortality rate modeling, particularly when dealing with mortality 

tables or cohort-based analysis. The application of a non-square matrix 

generated from McCutcheon’s polynomial in modeling mortality rate 

intensity is a more advanced topic that combines actuarial techniques 

with matrix algebra for representing and solving mortality rate patterns. 

McCutcheon’s polynomial is typically used to model the relationship 

between the age of an individual and the probability of survival or 

mortality rate. The polynomial gives a smooth curve that approximates 

mortality or survival functions, often used in mortality tables. In many 

mortality models, we approximate the mortality rate x  at age x  with a 

polynomial expression such as: 
2 3

0 1 2 3 ... k

x kx x x x     = + + + + +      

 (1) 

where i  are the coefficients, and k  is the degree of the polynomial, 

determining the complexity of the curve. A non-square matrix in this 

context would generally be a matrix where the number of rows and 

columns are not equal. Non-square matrices can arise in actuarial 

modeling when we have a model involving multiple cohorts or different 

periods, and the data structure doesn’t necessarily align in a square form 

(i.e., age groups or cohorts may differ in size, which results in matrices 

that are not square). In mortality modeling, the use of a non-square 

matrix might arise when the model requires tracking mortality rates over 

multiple time periods (e.g., cohorts over years) or across multiple age 

groups (i.e., not all age groups have the same number of data points).  

 

This non-square matrix could represent coefficients, adjustments or even 

rates for mortality intensities across varying parameters like age and 

time. In this case, the non-square matrix could be used to represent the 

coefficients or values of the polynomial (McCutcheon’s polynomial) across 

different age cohorts and time periods. For example, we might use a 

matrix to store mortality rates at different ages for different time periods 

or different groups as follows. 
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       

       

 
 
 
 
 

=  
 
 
 
 
 

    

 (1a) 

where 

M is a non-square matrix. 

( )n k   represents the mortality rate at age group mmm at time k  

n could represent a specific cohort, and k   could be a year. 

This matrix can then be multiplied with the polynomial coefficients to 

predict or adjust mortality intensities for each age group and time period. 

Mortality intensity is defined as the instantaneous rate of mortality, often 

represented by the force of mortality, x  which is related to survival and 

mortality probabilities. In a McCutcheon’s polynomial model, you might 

have: 

0

k
j

x j

j

x 
=

=          

 (1b) 

If you apply this polynomial to the matrix M  you are essentially fitting the 

polynomial over the data points in the matrix to estimate the mortality 

rate over time or across different age groups. By solving this system, you 

can track the mortality rate over a specified range of ages or cohorts, 

enabling predictions of future mortality or analysis of past trends. 

 

Cohort-Specific Mortality Rates: If you have mortality rates for multiple 

cohorts over time, the matrix could be used to track these rates, with the 

non-square nature accommodating differences in the number of cohorts 

and time periods. Dynamic Mortality Models: In more advanced actuarial 

models, mortality rates can evolve over time. A non-square matrix could 
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be used to capture the changing nature of mortality rates across different 

time periods and age groups. 

 

Multivariate Mortality Analysis: In cases where multiple factors influence 

mortality (e.g., socioeconomic status, lifestyle, geographic location), a 

non-square matrix could 

 

Mathematical Preliminaries 

 

Let ( )x   denote a life aged x where 0x . Since the death of ( )x can occur 

at any age y x , the future lifetime of ( )x can be modelled by the 

continuous complete future life time function 
xT  such that the true 

function of the mortality intensity at age x  is given 

 
0

1
lim Px x
x

T x
x


 → +

=  


      

 (1c) 

 exp exp
x

x

x
x

x

p d




  


  
+

+

=

 
= −  − 

 
     

 (2) 

where 
xp  is the probability that individual ( )x survives to age x +  

The problem of estimating death rate x  at any given instant occurs most 

often in mortality analysis. If  xl  defines the expected number of lives 

surviving to age x  and x  is  the  instantaneous  death  rate,  then  it  is  

possible  to  evaluate  the  value  of x   numerically from  the  first  order  

ordinary  differential  equation  described  by 
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x

x x

dl
l

d



 


+

+ + = −          

 (3) 

where 

0

x x xl l d  


+ +=          

 (4) 

Theorem 

Let the random life time of a new born take value in the interval  )0, , 

then  

( ) ( ) ( )0X XdF x dH x f x dx=  +P      

 (5) 

where ( )Xf x  is the defective death density.    

Proof 

Let x  define the age of a life with 0x  . The survival function xl  

represents the survival probability from age 0  to age x . It is functionally 

connected with the death density function ( )Xf x as follows:  

( ) x
X

dl
f x

dx
− =         

 (5a) 

( ) ( )
0

1

x

x X X

x

l f t dt f t dt



= = −        

 (5b) 

and force of mortality is given by  

( )X

x

x

f x

l
 =         

 (5c) 
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for all x  such that 0xl   

Observe that the distribution function of death ( ) 0XF x =  for 0x   and  

( ) ( )0 0XF X= =P  for 0x   

( ) ( ) ( )0X X x X xF x =  =  P P      

 (6) 

( ) ( ) ( )0 0 0X x X X x  = +=  P P P     

 (7) 

Assume that the distribution function ( )XF x  is differentiable on ( )0, , 

then there exists a defective death density function ( )Xf x , 0x   such 

that  

( ) ( ) ( )0

x

X X X
F x F f d 

−

− =       

 (8) 

Define the Heavy side function  

( )
1 0

0 0

if x
H x

if x


= 


      

 (9) 

Then for all xR , we observe that for ( )0 0X= =P P   

( ) ( ) ( )  0 0
1

x

X X
F x H x f d


 



−

=  + P     

 (10) 

Now observe that  

( ) ( )dH x x dx=        

 (11) 
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( ) ( ) ( )0X XdF x dH x f x dx=  +P      

 (12) 

Hence the proof 

Theorem 

Let 
xT  be the random life time of a life aged x , then the curve of death 

function l   is given by 

( ) ( )
00

0

x x s x s Tl ds l f x H x dx 
 

+ +

−

 =         

 (13) 

Proof 

( ) ( )
xT x xf p   +=          

 (14) 

( ) ( )
0 0

0

T

l
f p

l

 
 


 =  =        

 (15) 

( ) ( ) ( ) ( )
0 0

lim

s

T T
s

s

f H d f H d     


→
− −

 
 =  

 
       

 (16) 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

lim

s
s

T T T
ss

s

f H d f H f H d       


−→
− −

 
  = −  
 

    

 (17) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

lim lim

s

T T T T
s s

s

f H d f s H s f s H s f H d     


→ →
− −

 
  = − − − −  

 
 

 (18) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

lim lim lim

s

T T T T
s s s

s

f H d f s H s f s H s f H d     


→ → →
− −

 = − − − − 

 (19) 

From equation (9), ( ) 0H s− =  

( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0

0

0

lim 0 lim

s

T T T T
s s

s

f H d f s f H d f H d        


→ →
− −

  
  = − − + 

  
  

 (20) 

( ) ( ) ( ) ( )
0 0 0

0

lim lim 0

s

T T T
s s

f H d f s f d    


→ →
−

  
 = − + 

  
     

 (21) 

( ) ( ) ( ) ( )
0 0 0 0

lim lim
s

T T T
s s

f H d f s f   


→ →
−

  = −       

 (22) 

( ) ( ) ( ) ( ) ( )
0 0 0 0

lim lim 0T T T T
s s

f H d f s f s f  


→ →
−

  = − −     

 (23) 

( ) ( ) ( )
0 0

0T Tf H d f  


−

 =        

 (24) 

( ) ( ) ( )
0 0

0

T

l
f H d p

l

 
 


   



−

 =  =      

 (25) 

( ) ( )
00 Tl l f H d    



−

=          

 (26) 
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replacing   by x  in (26) and observe that 
0

x x s x sl l ds


+ +=   in (4), we have 

( ) ( )
00

0

x x s x s Tl ds l f x H x dx 
 

+ +

−

 =        

 (26a) 

Hence the proof 

 

 

 

McCutcheon (1981-1983) defines the force of mortality as 

1

1,2,3,...

n

ij j

j

x

i

C l

l

i n






+

=

+

−

=

=


        

 (27) 

We can then expand (27) to have 

1 1 2 2 ...i i in
x

i

C l C l C

l

 



 + +

+

 + + +
= − 

 
      

 (28) 

Take 

5, 3, 3

5 2, 2

if n i then x

if n i then x





= = = −

= = = −
      

 (29) 

1

1

1n

i

k i k
k i

C
x x=



 
=  

− 
         

 (30) 

 n  must be greater than 2.  3n   
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11 1, 1, 3, 1C where i j n k= = =   

11

1 2 1 3

1 1
C

x x x x
= +

− −
        

 (31) 

11

1 1 1 1 1 3
1

1 2 1 3 1 2 2 2
C

−
= + = + = − − =

− − − −
     

 (32) 

 

1

1 n
i k

ij

kj i j k
i i
k j
i j

x x
C

x x x x=




   −
=       − −   

        

 (33) 

for 1, 2i j= =  

3
1 2

12

12 1 2 1
1
2

1 2

1

k
k
k

x x
C

x x x x=




   −
=    

− −   
        

 (34) 

1 3
12

2 1 2 3

1 1 1 3 1 2
2

2 1 2 3 1 1

x x
C

x x x x

   − − −   
= = = =      − − − − −      

   

 (35) 

 

3
1

13

13 1 3
1
3

1 3

1 k

k k
k
k

x x
C

x x x x=




   −
=    

− −   
        

 (36) 
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1 2
13

3 1 3 2

1 1 1 2 1 1 1

3 1 3 2 2 1 2

x x
C

x x x x

 − − − −   
= = = =     

− − − −    
   

 (37) 

3
2

21

11 2 1
2
1

1 2

1 k

k k
k
k

x x
C

x x x x=




 
 

 − 
=   − −  

 
 

        

 (38) 

 

( )2 3
21

1 2 1 3

1 1 2 3 1 1
1

1 1 3 2 2

x x
C

x x x x

 − − − − 
= = = − =   

− − − − −  
    

 (39) 
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1 2
2

1

2, 2, 3 2

n

k k
k

C
x x

i j n k

=


 
=  

− 

= = = 



       

 (40) 

22

2 1 2 3

1 1 1 1 1 1
0

2 1 2 3 1 1
C

x x x x
= + = + = + =

− − − − −
    

 (41) 
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3
2

23

13 2 3
2
3

2 3

1 k

k k
k
k

x x
C

x x x x=




 
 

 − 
=   − −  

 
 



       

 (42) 

2 1
23

3 2 3 1

1 1 2 1 1 1 1

3 2 3 1 1 2 2

x x
C

x x x x

 − −    
= = = =      

− − − −         

 (43) 

3
3

31

11 3 1
3
1

3 1

1 k

k k
k
k

x x
C

x x x x=




 
 

 − 
=   − −  

 
 

        

 (44) 

3 2
31

1 3 1 2

1 1 1 1

2 1 2

x x
C

x x x x

 −  
= = =   

− − − −  
     

 (45) 

3 1
32

2 3 2 1

1 x x
C

x x x x

 −
=  

− − 
       

 (46) 

32

1 3 1 2
1 2

1 2 1 1
C

−   
= = − = −   
− −   

      

 (47) 

1
33 2

3 1 3 2

1 1 1 1 3
1

2 1 2
C

x x x x
= + = + = =

− −
     

 (48) 
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3 4 1

1 0 1

1 4 3

ijC

− − 
 

= − 
 − 

       

 (49) 

1

1,2,3,...

n

ij j

j

x

i

C l

l

i n






+

=

+

−

=

=


        

 (50) 

  



 

16 
 

Model 1 

 

McCutcheon (1983) obtained the mortality matrix as 

25 48 36 16 3

3 10 18 6 1

1 8 0 8 1

ijc

− − − 
 

= − − − 
 − − 

      

 (51) 

1−= x  

5

1 1

1

x i ij x j

j

C l − + − +

=

= −         

 (52) 

5

1 1 1

1

1
x ij x j

jx

C l
l

 − ++ − +

=

 −
=  

 
        

 (53) 









−+−+

−−
= ++++ 4321

12

3

12

16

12

36

12

48

12
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Presentation of Results 

Table 1: (Model 1) 

x
   xl       x   x xl   

0 1000000 0.012232 12232 

1 993887 0.000465 462 

2 993467 0.000382 380 

3 993126 0.000308 306 

4 992853 0.000245 243 

5 992634 0.000199 198 

6 992454 0.000165 164 

7 992300 0.000146 145 

8 992162 0.000133 132 

9 992034 0.000125 124 

10 991910 0.000126 125 

11 991782 0.000134 133 

12 991640 0.000156 155 

13 991469 0.000197 195 

14 991248 0.000258 256 

15 990948 0.000356 353 

16 990535 0.000485 480 

17 989983 0.000628 622 

18 989281 0.000785 777 

19 988440 0.000903 893 

20 987498 0.000997 985 

21 986499 0.001019 1005 

22 985491 0.001021 1006 

23 984501 0.000986 971 

24 983553 0.000940 925 

25 982657 0.000884 869 

26 981816 0.000831 816 

27 981023 0.000787 772 

28 980265 0.000763 748 

29 979528 0.000745 730 

30 978799 0.000745 729 

31 978063 0.000760 743 
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Table 1: (Model 1) – Continued 

x
   xl       x   x xl   

32 977311 0.000781 763 

33 976538 0.000799 780 

34 975738 0.000842 822 

35 974903 0.000869 847 

36 974031 0.000922 898 

37 973110 0.000971 945 

38 972132 0.001043 1014 

39 971079 0.001128 1095 

40 969933 0.001238 1201 

41 968671 0.001370 1327 

42 967269 0.001534 1484 

43 965699 0.001723 1664 

44 963929 0.001954 1884 

45 961922 0.002219 2135 

46 959648 0.002515 2414 

47 957087 0.002826 2705 

48 954232 0.003149 3005 

49 951081 0.003468 3298 

50 947629 0.003811 3611 

51 943856 0.004178 3943 

52 939731 0.004590 4313 

53 935209 0.005067 4739 

54 930244 0.005587 5197 

55 924796 0.006170 5706 

56 918822 0.006795 6243 

57 912283 0.007497 6839 

58 905138 0.008232 7451 

59 897351 0.009055 8126 

60 888867 0.009956 8850 

61 979619 0.010988 10764 

62 869500 0.012200 10608 

63 858355 0.013667 11731 

64 845970 0.015482 13097 
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Table 1: (Model 1) – Continued 

x
   xl       x   x xl   

65 932083 0.017708 16505 

66 816413 0.020403 16657 

67 798694 0.023561 18818 

69 756335 0.031238 23626 

70 731511 0.035568 26018 

71 704285 0.040172 28293 

72 674789 0.045416 30646 

73 643346 0.050062 32207 

74 610419 0.055076 33619 

75 576168 0.060521 34870 

76 540747 0.066514 35967 

77 504283 0.073279 36953 

78 466885 0.081019 37827 

79 428691 0.089875 38529 

80 389904 0.100002 38991 

81 350812 0.111482 39109 

82 311804 0.124459 38807 

83 273364 0.138889 37967 

84 236050 0.154856 36554 

85 200433 0.172499 34574 

86 167061 0.191962 32069 

87 136432 0.213353 29108 

88 108965 0.236552 25776 

89 84962 0.261473 22215 

90 64565 0.288082 18600 

91 47742 0.316252 15099 

92 34298 0.345861 11862 

93 23903 0.377160 9015 

94 16137 0.409272 6604 

95 10540 0.443398 4673 

96 6650 0.477882 3178 

97 4048 0.514863 2084 

98 2372 0.552522 1311 

99 1335 0.595443 795 
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Table 1: (Model 1) – Continued 

x
   xl       x   x xl   

100 719 0.637228 458 

101 370 0.684459 253 

102 181 0.738029 134 

103 84 0.767857 64 

104 37 0.882883 33 

105 15 0.794444 12 

106 6 1.250000 8 

107 2 0.083333 0 

108 1 2.083333 2 

                

 

Figure 1a: Survival Curve  
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Fig 1b: mortality Curve  

 

 

Fig 1c: Curve of death      

     

  



 

24 
 

Fig 1d: Surface plots 

   

        

Table 2: (Model 2) 

x    xl       x   x xl   

0 1000000 0.00188 1875 

1 993887 0.00038 379 

2 993467 0.00031 305 

3 993126 0.00025 243 

4 992853 0.0002 198 

5 992634 0.00017 165 

6 992454 0.00015 145 

7 992300 0.00013 132 

8 992162 0.00013 125 

9 992034 0.00013 125 

10 991910 0.00013 133 

11 991782 0.00016 154 

12 991640 0.00019 191 

13 991469 0.00026 254 

14 991248 0.00035 351 

15 990948 0.00048 479 

16 990535 0.00063 627 

17 989983 0.00079 778 
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Table 2: (Model 2) – Continued 

x    xl       x   x xl   

18 989281 0.00091 899 

19 988440 0.00099 982 

20 987498 0.00102 1009 

21 986499 0.00102 1005 

22 985491 0.00099 973 

23 984501 0.00094 924 

24 983553 0.00088 868 

25 982657 0.00083 816 

26 981816 0.00079 774 

27 981023 0.00076 747 

28 980265 0.00075 730 

29 979528 0.00075 731 

30 978799 0.00076 744 

31 978063 0.00078 762 

32 977311 0.0008 786 

33 976538 0.00084 818 

34 975738 0.00087 852 

35 974903 0.00092 897 

36 974031 0.00097 948 

37 973110 0.00104 1014 

38 972132 0.00113 1097 

39 971079 0.00124 1202 

40 969933 0.00137 1330 

41 968671 0.00153 1483 

42 967269 0.00172 1666 

43 965699 0.00195 1886 

44 963929 0.00222 2141 

45 961922 0.00252 2422 

46 959648 0.00283 2715 

47 957087 0.00315 3012 

48 954232 0.00347 3310 

49 951081 0.00381 3622 

50 947629 0.00418 3957 
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Table 2: (Model 2) – Continued 

x    xl       x   x xl   

51 943856 0.00459 4334 

52 939731 0.00507 4760 

53 935209 0.00559 5227 

54 930244 0.00617 5739 

55 924796 0.0068 6290 

56 918822 0.0075 6887 

57 912283 0.00824 7516 

58 905138 0.00906 8198 

59 897351 0.00996 8937 

60 888867 0.01099 9764 

61 979619 0.01219 11943 

62 869500 0.01366 11875 

63 858355 0.01547 13280 

64 845970 0.0177 14975 

65 932083 0.0204 19013 

66 816413 0.02356 19236 

67 798694 0.02718 21708 

68 778714 0.03121 24300 

69 756335 0.03559 26914 

70 731511 0.04033 29501 

71 704285 0.04531 31908 

72 674789 0.05007 33787 

73 643346 0.05507 35430 

74 610419 0.0605 36931 

75 576168 0.0665 38313 

76 540747 0.07327 39621 

77 504283 0.08101 40852 

78 466885 0.08988 41963 

79 428691 0.10002 42876 

80 389904 0.11153 43484 

81 350812 0.12449 43672 

82 311804 0.13891 43314 

83 273364 0.15489 42341 
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Table 2: (Model 2) – Continued 

x    xl       x   x xl   

84 236050 0.17255 40730 

85 200433 0.19203 38488 

86 167061 0.21338 35647 

87 136432 0.23653 32270 

88 108965 0.26139 28482 

89 84962 0.28791 24461 

90 64565 0.31599 20402 

91 47742 0.34558 16499 

92 34298 0.37669 12920 

93 23903 0.40906 9778 

94 16137 0.44297 7148 

95 10540 0.47811 5039 

96 6650 0.51517 3426 

97 4048 0.55431 2244 

98 2372 0.59694 1416 

99 1335 0.64175 857 

100 719 0.69054 496 

101 370 0.74355 275 

102 181 0.79464 144 

103 84 0.86937 73 

104 37 0.91111 34 

105 15 1.04167 16 

106 6 0.83333 5 

107 2 1.33333 3 

108 1 - 0 
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Figure 2a: Survival function 

             

 

Figure 2b: mortality function 
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Figure 2c: Density function 

      

 

Figure 2d: Surface Plots 
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Table 3: (Model 3) 

x    xl       x   x xl   

0 1000000 - 100000 

1 993887 0.000310 308 

2 993467 0.000250 248 

3 993126 0.000200 199 

4 992853 0.000170 169 

5 992634 0.000150 149 

6 992454 0.000130 129 

7 992300 0.000130 129 

8 992162 0.000130 129 

9 992034 0.000130 129 

10 991910 0.000150 149 

11 991782 0.000190 188 

12 991640 0.000260 258 

13 991469 0.000350 347 

14 991248 0.000480 476 

15 990948 0.000630 624 

16 990535 0.000780 773 

17 989983 0.000910 901 

18 989281 0.000990 979 

19 988440 0.001020 1008 

20 987498 0.001020 1007 

21 986499 0.000990 977 

22 985491 0.000940 926 

23 984501 0.000880 866 

24 983553 0.000830 816 

25 982657 0.000790 776 

26 981816 0.000760 746 

27 981023 0.000750 736 

28 980265 0.000750 735 

29 979528 0.000760 744 

30 978799 0.000780 763 

31 978063 0.000800 782 
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Table 3: (Model 3) – Continued 

x    xl       x   x xl   

32 977311 0.000840 821 

33 976538 0.000870 850 

34 975738 0.000920 898 

35 974903 0.000970 946 

36 974031 0.001040 1013 

37 973110 0.001130 1100 

38 972132 0.001240 1205 

39 971079 0.001370 1330 

40 969933 0.001530 1484 

41 968671 0.001720 1666 

42 967269 0.001950 1886 

43 965699 0.002220 2144 

44 963929 0.002520 2429 

45 961922 0.002830 2722 

46 959648 0.003150 3023 

47 957087 0.003470 3321 

48 954232 0.003810 3636 

49 951081 0.004180 3976 

50 947629 0.004590 4350 

51 943856 0.005060 4776 

52 939731 0.005590 5253 

53 935209 0.006170 5770 

54 930244 0.006800 6326 

55 924796 0.007490 6927 

56 918822 0.008240 7571 

57 912283 0.009050 8256 

58 905138 0.009960 9015 

59 897351 0.010980 9853 

60 888867 0.012190 10835 

61 979619 0.013660 13382 

62 869500 0.015470 13451 

63 858355 0.017710 15201 
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Table 3: (Model 3) – Continued 

x    xl       x   x xl   

64 845970 0.020400 17258 

65 932083 0.023560 21960 

66 816413 0.027180 22190 

67 798694 0.031200 24919 

68 778714 0.035600 27722 

69 756335 0.040320 30495 

70 731511 0.045250 33101 

71 704285 0.050110 35292 

72 674789 0.055070 37161 

73 643346 0.060500 38922 

74 610419 0.066500 40593 

75 576168 0.073280 42222 

76 540747 0.081010 43806 

77 504283 0.089880 45325 

78 466885 0.100010 46693 

79 428691 0.111520 47808 

80 389904 0.124470 48531 

81 350812 0.138900 48728 

82 311804 0.154880 48292 

83 273364 0.172530 47163 

84 236050 0.192010 45324 

85 200433 0.213350 42762 

86 167061 0.236520 39513 

87 136432 0.261400 35663 

88 108965 0.287940 31375 

89 84962 0.316070 26854 

90 64565 0.345710 22321 

91 47742 0.376820 17990 

92 34298 0.409290 14038 

93 23903 0.443080 10591 

94 16137 0.478330 7719 

95 10540 0.515050 5429 
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Table 3: (Model 3) – Continued 

x    xl       x   x xl   

96 6650 0.554140 3685 

97 4048 0.595880 2412 

98 2372 0.640820 1520 

99 1335 0.687610 918 

100 719 0.739410 532 

101 370 0.790670 293 

102 181 0.849100 154 

103 84 0.922220 77 

104 37 0.944440 35 

105 15 1.041670 16 

106 6 0.833330 5 

107 2 - 2 

108 1 - 1 

 

Figure 3a: Survival function 
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Figure 3b: Mortality function 

   

 Fig 3c: Density function  
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 Fig 3d: Surface Plots 

   

 

Discussion  

In Tables 1 and 2 ,  the force of mortality x  is clearly defined at 

perinatality 0x =  and consequently, the intensities 0  can be captured. 

In Figures 1, it is observed that x  displays a continuously smooth curve 

but seems to cluster around the neighbourhood of age 105  suggesting 

more deaths than elsewhere while the survival curves in Figures 1a, 2a, 

3a exhibit kinks within the interval 60 70x  . Although, the survival 

function in Figure 2a kinks within 60 70x  , the trajectory of the 

mortality function increases continuously in figure 2. In tables 3 , the 

instantaneous death rate x  is not defined at 0x =  and hence the 

intensities 0  cannot be captured. In this case, it is clear that the 

estimation of x  is by far a difficult problem where part of the difficulty is 

the estimation of 0  at initial age when the only information given is xl . 

The mortality at age zero 0  is defined in the Gompertz’s law but the law 

is not designed to measure mortality at age zero in practice as mortality 
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cannot increase exponentially during infancy. In order to address the 

problems connected with intractable
0  in equation (64) at age 0  in 

Tables 3 and compare with Gompertz’s law x

x BC = , the following close 

form model are analytically developed. 
2 3

1 0 0 0 ...
2 6

l l l l l
 

  = +  + + +        

 (66) 
3

2

2 0 0 0 0

4
2 2 ...

3
l l l l l


  = +  +  + +       

 (67) 

We apply linear combination of 0 1 2, ,l l l  which gives 
0l   

0 1 2 0( )Al Bl Cl l only+ + → . Substitute the Taylor series expansion above 

yields 
2 3 3

2

0 0 0 0 0 0 0 0 0

4
... 2 2 ...

2 6 3
Al B l l l l C l l l l l

     
      + +  + + + + +  +  + + =   

   
 

 (68) 

We then extract the coefficients according of  
0l  and its derivatives. 

0

0

2
2

0

3 3

0

:

: 2

: 2
2

4
:

6 3

l A B C

l B C

B
l C

B C
l

+ +

  + 


 + 

 
 +

        

 (69) 

Now eliminate all terms except the one with 
0l  and hence solve 

0

2 1

2 0
2

A B C

B C

B
C

+ + =

 +  =

+ =

         

 (70) 

2 0 4
2

B
C B C+ =  = −        

 (71) 
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( )
1

4 2 1
2

C C C
−

−  +  =  =


      

 (72) 

2
4B C= − =


         

 (73) 

2 1 3

2 2
A B C

− −
= − − = + =

  
       

 (74) 

0 0 1 2 0 1 2

3 2 1

2 2
l Al Bl Cl l l l

−
 = + + = + −

  
     

 (75) 

Factor out 
1

2
 

( )0 0 1 2

1
3 4

2
l l l l = − + −


       

 (76) 

( ) ( )0
0 0 1 2 0 1 2

0 0

1 1
3 4 3 4

2 2

l
l l l l l l

l l



= − = − − + − = − +

 
   

 (77) 

The Gompertz’s law is defined for the age interval 60 90x   and 

assumes exponential increase in age at senescence. Although real-life 

mortality patterns in young age groups increase linearly due to external 

factors such as accidents, life style, environmental influences and as a 

result the classical Gompertz’s and Makeham’s laws which are dominated 

by the exponential term do not capture these early-life mortality trends. 

Of great concern in model-based mortality analysis is that the existing 

methods such as in Putra, Fitriyati and Mahmudi (2019) and Muzaki, 

Siswannah and Miasary (2020), the maximum likelihood estimation 

method used to estimate the parameters of the classical Makeham’s law 

have exhibited clear limitations particularly in obtaining the ageing 

parameter C to conform with the globally accepted critical interval 1.08 

and 1.12. A major problem with maximum likelihood method is that two 

parameters can influence the likelihood function which make the Jacobian 

columns of the Jacobian matrix to be linearly independent and hence the 

matrix becomes conditionally ill and hence the determinant is singular. 

Consequently, the parameters cannot be estimated. In the Gompertz’s 

law, the hazard rate increases without bounds as the age x→ . 
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However, depending on the degree, the polynomial-based hazard can 

increase, decrease or oscillate. The oscillation may be due to the Runge’s 

phenomenon, a problem associated with polynomial based mortality 

modelling when kinks occur. 

 

In Figures 1 and 2 , the mortality rates exhibit wavy kinks within 

105 113x   with a higher degree of complexity and increasing the 

mortality risk of shocks or idiosyncrasies at advanced ages.  The wavy 

kinks in the curves functionally connected with a high risk of noise occurs 

when using the polynomials associated with high-order dimensional non-

square mortality matrix to capture shocks rather than the true underlying 

trend. Furthermore, the kinky points may have occurred as a result of the 

Runge’s Phenomenon associated with polynomial modelling. In Figures 1, 

2 and 3, the mortality rates may be risky for extrapolation beyond 

approved respective ranges 105 113x   and 101 111x   of mortality 

data as they can behave erratically outside the fitted range. Moreover, the 

modal age at death can be estimated as 80  years. 

 

Consequently, the erratic behaviour of mortality rate associated with 

shocks within the intervals 105 113x   and 101 111x   are susceptible 

to the following consequences: While polynomial-based mortality can be 

used for extrapolation, there’s a risk that the model derived may not 

accurately predict long-term future mortality trends beyond the 

approved age, especially when the mortality pattern changes over time 

or in response to some health interventions such as medical 

advancements and health policies. As a result, the models may not 

capture shifts in trends caused by sudden changes in disease patterns or 

demographic shifts, such as a significant aging population or major public 

health crises. If polynomial is used for long-term mortality forecasting, 

then there is a significant risk of uncertainty.  

 

Mortality rates can change due to shifts in medical technology, lifestyle 

changes and other external factors that the polynomial model may not 

account for. Mortality models influence important underwriting 

decisions, including resource allocation such as healthcare spending; 

public health initiatives such as anti-smoking campaigns, vaccination 

programs and retirement planning such as pension systems. If the model 

overestimates or underestimates mortality rates, it could lead to 

misallocation of resources. If the polynomial model fails to capture 
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mortality changes due to new diseases or aging populations, 

policymakers might fail to adequately prepare for future challenges. 

 

Since x usually varies rapidly in the interval 10  x , there may not be 

any universally acceptable measure of 0 . The mortality intensity 
x  

demonstrates a continuously smooth curve but it is observed to kink into 

steps within 41 71x  . In Tables 1, there does not seem any age where 

the mortality intensity 
x =  is constant. The implication is that at adult 

ages, the risk of ageing will continuously escalate and any cause of death 

will increase at higher degree of intensities such that more severe ageing 

is caused as the force of mortality increases. 

 

In both Tables 1 and 2 , the intensities decline at age 23 29x   and then 

steadily increases while in tables 3 , the intensities decline at age 

23 33x  , this result is consistent with the stylized fact that 10x =  is the 

minimum point of mortality.  However, x =  is constant within the 

interval 8 9x   and thereafter progressively increases till senescence. 

In Table 3 , although, the mortality intensity 
x  is not both defined at age 

0x = , it becomes constant in the age interval 6 9x  . In this interval, 

this constant force of mortality can be observed from the survival 

probability 0

z

dy
z

z xp e e
 −

−= = .  

Under this constant force assumption, the probability that a life survives 

to age z x+  within the age interval 6 9x   becomes independent of x  

and consequently, the remaining lifetime approaches the negative 

exponential distribution when the age attained increases. Since life 

offices need a good estimates of mortality rates to price life annuities and 

reverse mortgages, this may offer a conservative technique in valuating 

life insurance schemes and life annuities.  

 

It is clear from the results of the computation that mortality intensities 

comparatively improve, best in Table 3 . This may be due to the flexibility 

and scalability in model 3 permitting the choice of the degree of 

complexity in computing intensities and fitting the mortality curves with 

a trade-off between information requirement and accuracy. 

Consequently, as the subscripts i  increases, the approximation obtained 
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improves. Recall that x
x

x

l

l



= − , consequently, in Table 1, the resistance to 

mortality rate intensities at age  odal agex m  defined by 
1 x

x x

l

l




 
= = − 

 
 

decreases from 81.7528  at age 0  to 0.4800  at age 108 . The trend 

changes in table 2 , as   decreases from 533.3333  at age 0  to 0.7500  at 

age 107 . In Table 3 ,   decreases from 3225.8065  at age 1 to 1.2000  at 

age 106 . The resistance which could be employed in measuring life 

expectancy at senescent ages would stabilize as lim 0
x

d

dx



→

 
= 

 
 

 

Conclusion 

 

This study demonstrates the significant potential of employing a non-

square matrix generated from McCutcheon’s polynomial in modeling 

mortality rate intensity. By leveraging the polynomial's flexibility in 

capturing complex, age-specific mortality dynamics, the proposed model 

improves both the accuracy and interpretability of mortality rate 

predictions. The application of a non-square matrix allows for more 

nuanced modeling of nonlinear and time-dependent effects, which 

traditional square matrix approaches often overlook. Through case 

studies and comparative analysis, it was shown that this method 

enhances predictive power and provides a more adaptable framework for 

diverse populations. The results emphasize the value of extending 

classical demographic models and suggest that McCutcheon’s 

polynomial, in its extended form, offers a promising tool for future 

research in mortality modeling, with implications for actuarial science, 

public health, and demographic forecasting. Further work can explore the 

integration of additional demographic factors and the refinement of the 

model to address specific population subsets and longitudinal data. 

 

Applying polynomials in modeling mortality rates can be a useful 

approach, particularly in cases where the mortality data exhibits complex 

or non-linear patterns that are difficult to capture with simpler linear 

models. Polynomials can provide flexibility in fitting the data, making 

them a good tool for descriptive analysis and certain types of predictive 

modeling. Using historical mortality data, a polynomial model can predict 
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future mortality trends based on observed time patterns. For example, in 

countries with aging populations, a polynomial model might capture the 

acceleration of mortality in older age groups over time. Mortality rates 

can change over time due to various factors, such as improvements in 

healthcare, lifestyle changes, or the emergence of new diseases.  

 

Polynomial models can be used to fit mortality trends as a function of 

time, particularly when there are non-linear trends. Polynomials can also 

be applied to model mortality rates in subgroups, such as by gender, 

socioeconomic status, or geographic region. These subgroups may 

exhibit different mortality trends, which polynomials can capture 

effectively.  

 

In this paper, we have given a detailed analysis of mortality modelling 

based on McCutcheon’s mortality polynomial matrices to explain decline 

in mortality. Three models were developed to that effect. All the three 

models yield positive mortality intensities. However, decreasing trend is 

observed beyond the age 10  and almost constant patterns were 

observed within the interval indicated across the models. 
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